

SECOND-YEAR OF BACHELOR OF SCIENCE CHEMISTRY (MAJOR AND MINOR) REVISED SYLLABUS ACCORDING TO CBCS NEP2020

COURSE TITLE: CHEMISTRY-I SEMESTER-III W.E.F. 2024-2025

RECOMMENDED BY THE BOARD OF STUDIES IN CHEMISTRY AND APPROVED BY THE ACADEMIC COUNCIL

Devrukh Shikshan Prasarak Mandal's

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and Vid. Dadasaheb Pitre Science College (Autonomous), Devrukh. Tal. Sangameshwar, Dist. Ratnagiri-415804, Maharashtra, India

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce and Vid. Dadasaheb Pitre Science College, Devrukh (An Autonomous College Affiliated with University of Mumbai)

Academic Council Item No:

Name of the Implementing	:	Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre
Institute		Commerce, and Vid. Dadasaheb Pitre Science
		College (Autonomous), Devrukh. Tal.
		Sangameshwar, Dist. Ratnagiri-415804,
Name of the Parent University	:	University of Mumbai
Name of the Programme	:	Bachelor of Science
Name of the Department	:	Chemistry
Name of the Class	:	Second Year
Semester	:	Third
No. of Credits	:	02
Title of the Course	:	Chemistry-I
Course Code	:	S201CHT
Name of the Vertical in adherence	:	Major and Minor
to NEP 2020		
Eligibility for Admission	:	Any student admitted to Second Year of B.Sc.
		Degree Programme in adherence to Rules and
		Regulations of the University of Mumbai and
		Government of Maharashtra
Passing Marks	:	40%
Mode of Assessment	:	Formative and Summative
Level	:	UG
Pattern of Marks Distribution for	:	40:60
SEE and CIA		
Status	:	NEP-CBCS
To be implemented from Academic	:	2024-2025
Year		
Ordinances /Regulations (if any)		

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce and Vid. Dadasaheb Pitre Science College, Devrukh (An Autonomous College Affiliated with University of Mumbai)

Syllabus for Second Year of Bachelor of Science in Chemistry

(With effect from the academic year 2024-2025)

SEMESTER-III

Course Title: Chemistry-I

Type of Vertical: Major and Minor

Paper No.– 1 No. of Credits - 02 COURSE CODE: S201CHT

Learning Outcomes Based on BLOOM's Taxonomy:

After completing the course, the learner will be able to						
Course Learning Outcome No.	Blooms Taxonomy	Course Learning Outcome				
CLO-01	Remember	describe Kohlrausch law and its independent migration of ions.				
CLO-02	Understand	explain SN1, SN2, SNi mechanism.				
CLO-03	Apply	compare atomic and molecular orbitals.				

Syllabus for Second Year of Bachelor of Science in Chemistry

(With effect from the academic year 2024-2025)

SEMESTER-III

Course Title: Chemistry-I

Paper No.– 1

No. of Credits - 02

Type of Vertical: Major and Minor

COURSE CODE: S201CHT

COURSE CONTENT						
Module No.	Content	Credits	No. of Hours			
1	 1.1 Chemical Thermodynamics-II (6 hr) Free Energy Functions: Helmholtz Free Energy, Gibbs-Helmholtz equation, Van't Hoff reaction isotherm and Van't Hoff reaction isochore. (Numericals expected). Partial Molal Properties, Gibb's Duhem equation. 	01				
	1.2 Electrochemistry (4 hr) Conductivity, equivalent and molar conductivity. Kohlrausch law and its independent migration of ions. Applications for determination of degree of ionization and ionization constant of weak electrolyte, solubility and solubility product of sparingly soluble salts. (Numericals expected). Transference number.		15			
	1.3 Chemical Bonding Directional Bonding: Orbital Approach (5 hr) Covalent Bonding, The Valence Bond Theory- Introduction; Bonding in Polyatomic Species: The role of Hybridization. And types of hybrid orbitals-sp, sp^2 , sp^3 , sp^3d , $sp^2d^2and sp^2d sp^3d^2$. Equivalent and Non-Equivalent hybrid orbitals Contribution of a given atomic orbital to the hybrid orbitals (with reference to sp^3 hybridization as in CH ₄ , NH ₃ and H ₂ O)					
2	 2.1 Reactions and reactivity of halogenated hydrocarbons (3 hr) Alkyl halides: Nucleophilic substitution reactions: SN1, SN2 and SNi mechanisms with stereochemical aspects 	01	15			

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce and Vid. Dadasaheb Pitre Science College, Devrukh (An Autonomous College Affiliated with University of Mumbai)

2.2 Alcohols and Phenols (7 hr)		
Alcohols: Nomenclature, Preparation: Hydration of alkenes, hydrolysis of alkyl halides, reduction of aldehydes and ketones, using Grignard reagent. Properties: Hydrogen bonding, types and effect of hydrogen bonding on different properties. Acidity of alcohols, Reactions of alcohols		
Phenols: Preparation, physical properties and acidic character. Comparative acidic strengths of alcohols and phenols, resonance stabilization of phenoxide ion. Reactions of phenols.		
2.3 Molecular Orbital Theory (5 hr)		
Comparing Atomic Orbitals and Molecular Orbitals. Molecular orbital Theory and Bond Order and magnetic property for Hydrogen to Neon Molecule.		
Total	02	30

Access to the Course

The course is available for all the students admitted for Second Year Bachelor of Science.

Methods of Assessment

The assessment pattern would be 40:60, 60% for Semester End Examination (SEE) and 40% for Continuous Internal Assessment (CIA). The structure of the SEE and CIA would be as recommended by the Board of Studies and approved by the Board of Examination and the Academic Council of the college.

References:

- 1. A. Bhal, B.S. Bahl, G.D. Tuli- Essentials of Physical Chemistry: Thermodynamics- Page No. 359-362.
- 2. Gurdeep Raj, Advanced Physical Chemistry, GOEL Publishing House (2012): Electrochemistry- Page No. 1110-1120.
- 3. Lee, J.D. Concise Inorganic Chemistry, 5th edition (2011): Molecular Orbital Theory-Page No. 98-107.
- 4. Bahl and Bahl, A Textbook of Organic Chemistry, S. Chand Publication (2014): Halogenated Hydrocarbons- Page No. 274-300; Alcohols & Phenols- Page No. 314-346.
- 5. R. L. Madan, Organic Chemistry (2010): Alcohols & Epoxides- Page No. 343-381; Phenols- Page No. 382-407.
- 6. Brown, Foote, Iverson & Anslyn, Organic Chemistry, 6th edition, Brooks-Cole Publication: Alcohols- Page No. 390-424.
- Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce and Vid. Dadasaheb Pitre Science College, Devrukh (An Autonomous College Affiliated with University of Mumbai)