

SECOND-YEAR OF BACHELOR OF SCIENCE CHEMISTRY (MAJOR AND MINOR) REVISED SYLLABUS ACCORDING TO CBCS NEP2020

COURSE TITLE: CHEMISTRY PRACTICAL-I SEMESTER-III W.E.F. 2024-2025

RECOMMENDED BY THE BOARD OF STUDIES IN CHEMISTRY AND APPROVED BY THE ACADEMIC COUNCIL

Devrukh Shikshan Prasarak Mandal's

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and Vid. Dadasaheb Pitre Science College (Autonomous), Devrukh. Tal. Sangameshwar, Dist. Ratnagiri-415804, Maharashtra, India

Academic Council Item No:

Name of the Implementing	:	Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre	
Institute		Commerce, and Vid. Dadasaheb Pitre Science	
		College (Autonomous), Devrukh. Tal.	
		Sangameshwar, Dist. Ratnagiri-415804,	
Name of the Parent University	:	University of Mumbai	
Name of the Programme	:	Bachelor of Science	
Name of the Department	:	Chemistry	
Name of the Class	:	Second Year	
Semester	:	Third	
No. of Credits	:	02	
Title of the Course	:	Chemistry Practical-I	
Course Code	:	S203CHP	
Name of the Vertical in adherence	:	Major and Minor	
to NEP 2020			
Eligibility for Admission	:	Any student admitted to Second Year of B.Sc.	
		Degree Programme in adherence to Rules and	
		Regulations of the University of Mumbai and	
		Government of Maharashtra	
Passing Marks	:	40%	
Mode of Assessment	:	Summative at the end of semester	
Level	:	UG	
Pattern of Marks Distribution for	:	100 %	
SEE			
Status	:	NEP-CBCS	
To be implemented from Academic	:	2024-2025	
Year			
Ordinances /Regulations (if any)			

Syllabus for Second Year of Bachelor of Science in Chemistry (With effect from the academic year 2024-2025)

SEMESTER-III

Course Title: Chemistry Practical-I

Type of Vertical: Major and Minor

No. of Credits - 02 COURSE CODE: S203CHP

Learning Outcomes Based on BLOOM's Taxonomy:

After completing the course, the learner will be able to					
Course Learning Outcome No.	Blooms Taxonomy	Course Learning Outcome			
CLO-01	Apply	determine dissociation constant of weak acid, critical solution temperature of Phenol-Water System, energy of activation of hydrolysis reaction.			
CLO-02	Evaluate	verify Ostwald's dilution law and solubility of sparingly soluble salts			
CLO-02	Create	synthesize organic compounds by performing a single step and assemble analytical instruments.			

Syllabus for Second Year of Bachelor of Science in Chemistry

(With effect from the academic year 2024-2025)

SEMESTER-III

Course Title: Chemistry Practical-I

No. of Credits - 02

COURSE CODE: S203CHP

Type of Vertical: Major and Minor

COURSE CONTENT

Sr. No.	Content	Credits	No. of Hours
1	 Physical Chemistry 1. To verify Ostwald's dilution law for weak acid conductometrically. 2. To determine dissociation constant of weak acid conductometrically. 3. To determine the critical solution temperature (CST) of Phenol - Water System. 4. Determination of energy of activation of acid catalyzed hydrolysis of methyl acetate. 5. To investigate the reaction between K₂S₂O₈ and KI with equal initial concentrations of the reactants 6. To determine solubility of sparingly soluble salts (any two) conductometrically. Organic Chemistry Short organic preparation and their purification: Use 0.5-1.0g of the organic compound. Purify the product by recrystallization. Report theoretical yield, percentage yield and melting point of the purified product. Preparation of: 1 Cyclohexanone oxime from Cyclohexanone. 2 Tribromoaniline from Aniline. 3 Phthalic anhydride from Phthalic acid by sublimation 4 Acetanilide from Aniline 	02	60
	Total	02	60

Access to the Course

The course is available for all the students admitted to Second Year Bachelor of Science.

Methods of Assessment

Practical courses, Vocational Skill Courses, Skill Enhancement Courses and the courses having laboratory sessions shall be assessed at the end of each semester.

Reference Books

- 1. Khosla B.D., Garg V.C. and Gulati A., Senior Practical Physical Chemistry, R. Chand and Co., New Delhi (2011).
- 2. Garland C. W., Nibler J.W. and Shoemaker D.P., Experiments in Physical Chemistry, 8thEd., McGraw-Hill, New York (2003).
- 3. Halpern A.M. and McBane G.C., Experimental Physical Chemistry, 3rd Ed., W. H. Freeman and Co., New York (2003).
- 4. Athawale V.D. and Mathur P., Experimental Physical Chemistry, New Age International, New Delhi (2001).
- 5. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009)
- 6. Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis, University Press (2000). Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009)
- 1. Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical Organic chemistry, 5th Ed., Pearson (2012)
- 2. Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., Textbook of Practical Organic Chemistry, Prentice-Hall, 5th edition, 1996