

FIRST-YEAR OF BACHELOR OF SCIENCE MAJOR MATHEMATICS REVISED SYLLABUS ACCORDING TO CBCS NEP2020

COURSE TITLE: CALCULUS II SEMESTER-II, W.E.F. 2022-2023

RECOMMENDED BY THE BOARD OF STUDIES IN MATHEMATICS AND

APPROVED BY THE ACADEMIC COUNCIL

Devrukh Shikshan Prasarak Mandal's Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and Vid. Dadasaheb Pitre Science College (Autonomous), Devrukh. Tal.Sangmeshwar, Dist. Ratnagiri-415804, Maharashtra, India

Name of the Implementing	:	Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre
Institute		Commerce, and Vid. Dadasaheb Pitre Science
		College (Autonomous), Devrukh. Tal.
		Sangmeshwar, Dist. Ratnagiri-415804,
Name of the Parent University	:	University of Mumbai
Name of the Programme	:	Bachelor of Science
Name of the Department	:	Mathematics
Name of the Class	:	First Year
Semester	:	First
No. of Credits	:	04
Title of the Course	:	Calculus-II
Course Code	:	S103MTT
Name of the Vertical in adherence	:	Major and Minor
to NEP 2020		
Eligibility for Admission	:	Any 12 th Pass seeking Admission to Degree
		Programme in adherence to Rules and Regulations
		of the University of Mumbai and Government of
		Maharashtra
Passing Marks	:	40%
Mode of Assessment	:	Formative and Summative
Level	:	UG
Pattern of Marks Distribution for	:	60:40
TE and CIA		
Status	:	NEP-CBCS
To be implemented from Academic	:	2023-2024
Year		
Ordinances /Regulations (if any)		

Academic Council Item No: _____

Syllabus for First Year of Bachelor of Science in Mathematics

(With effect from the academic year 2023-2024)

SEMESTER-II

Course Title: Calculus-II

Type of Vertical: Major and Minor

Paper No.– Mathematics Paper – I No. of Credits - 02 COURSE CODE: S103MTT

Learning Outcomes Based on BLOOM's Taxonomy:

After completing the course, the learner will be able to...

Course Learning Outcome No.	Blooms Taxonomy	Course Learning Outcome
CLO-01	Remember	Remember the fundamental concepts of sequence, series and maxima and minima of a function.
CLO-02	Understand	Understand convergence and divergence of a sequence and series, and mean value theorems
CLO-03	Apply	Apply tests for maxima and minima to find extreme values and L'Hospital rule.
CLO-04	Analyze	Analyze convex and concave functions and graphing of a functions

Syllabus for First Year of Bachelor of Science in Mathematics

(With effect from the academic year 2023-2024)

SEMESTER-II

Paper No.- Mathematics Paper - I

Course Title: CALCULUS II

No. of Credits - 02

Type of Vertical: Major and Minor т

COURSE CODE:	S103MTT
---------------------	----------------

Module No.	Content	No. of Lectures
Unit I Applications of differentiation	 Definition of local maximum and local minimum, necessary condition, stationary points, second derivative test, examples, Graphing of functions using first and second derivatives, concave, convex, concave functions, points of inflection. Palle's theorem. Lagrange's and Caushy's mean value 	10
	 2. Rolle's theorem, Lagrange's and Cauchy's mean value theorems, applications and examples, Monotone increasing and decreasing function, examples, 3. L-Hospital rule without proof, examples of intermediate 	10
	forms, Taylor's theorem with Lagrange's form of remainder with proof. Taylor's polynomial and applications	
Unit II Sequences	 Definition of a sequence and examples, Convergence of sequences, every nvergent sequences is bounded. Limit of a convergent sequence and uniqueness of limit, Divergent sequences. Convergence of standard sequences like (1/(1+na)) ∀a> 0, (b)ⁿ∀ 0 <b (c<sup="" <1,="">1/_n)∀ c > 0 and (n¹/_n), Algebra of convergent sequences, sandwich theorem, monotone sequences, monotone convergence theorem and consequences as convergence of (1 + 1/n)ⁿ Definition of subsequence, subsequence of a convergent sequence is convergent and converges to the same limit, definition of a Cauchy sequences, every convergent sequences as a Cauchy sequence and converse. 	10
Unit III Series	 Series ∑_{n=1}[∞] a_npf real numbers, simple examples of series, Sequence of partial sums of a series, convergent series, divergent series. Necessary condition :∑_{n=1}[∞] a_n converges ⇒a_n→ 0, but converse is not true, algebra of convergent series, Cauchy criterion, divergence of harmonic series. 	10

convergence of $\sum_{n=1}^{\infty} \frac{1}{n^p}$ (P>1), comparison test, limit comparison test, alternating series, Leibnitz's theorem (alternating series test) and convergence of $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$, absolute convergence, conditional convergence, absolute convergence implies convergence but not conversely, Ratio test (without proof), root test(without proof) and examples.	
Total	30

Required Previous Knowledge

Basic Mathematics Knowledge is necessary before starting to learn the course.

Access to the Course

The course is available for all the students admitted for Bachelor of Science as a Major or a minor. The students seeking admission in other disciplines may select the course as a minor considering the terms and conditions laid down by the University of Mumbai, the Government of Maharashtra, and the college, from time to time.

Forms of Assessment

The assessment of the course will be of Diagnostic, Formative and Summative type. At the beginning of the course diagnostic assessment will be carried out. The formative assessment will be used for the Continuous Internal Evaluation whereas the summative assessment will be conducted at the end of the term. The weightage for formative and summative assessment will be 60:40. The detailed pattern is as given below.

Term End Evaluation (30 Warks)				
Question Paper Pattern				
	Time: 1 hour			
Question	Question Pattern	Marks		
No.				
Q.1	Short Answer Questions (based on Unit I)	10		
Q.2	Long Answer Questions (based on Unit II)	10		
Q.3	Long Answer Questions (based on Unit III)	10		
	Total	30		

Torm End Evolution (30 Marks)

Internal evaluation (20 Marks)

Sr.	Description	Marks
No.		
1	Mid Term Examination	10
2	Active Participation in teaching learning Process	05
3	Subject related activities as assigned by the teacher	05
	Total	20

Grading Scale

The grading scale used is O to F. Grade O is the highest passing grade on the grading scale, and grade F is a fail. The Board of Examinations of the college reserves the right to change the grading scale.

References:

- 1. R.R.Goldberg, Methods of Real Analysis, Oxford and IBH, 1964.
- 2. James Stewart, Calculus, Third Edition, Brooks/ Cole Publishing company, 1994.
- 3. T.M.Apostol, Calculus, Vol I, Wiley And Sons (Asia) Pte. Ltd.
- 4. Richard Courant- Fritz John, A Introduction to Calculus and Analysis, Volume-I, Springer.
- 5. Ajit Kumar- S.Kumaresan, A Basic course in Real Analysis, CRC Press, 2014.
- 6. Ghorpade, Sudhir R, -Limaye, Balmohan V, A course in Calculus and Real Analysis,

Springer International Ltd, 2000.

- 7. K.G. Binmore, Mathematical Analysis, Cambridge University Press, 1982.
- 8. G.B.Thomas, Calculus, 12 th Edition 2009