

THIRD-YEAR OF BACHELOR OF COMPUTER SCIENCE REVISED SYLLABUS ACCORDING TO CBCS

COURSE TITLE: ARTIFICIAL INTELLIGENCE

SEMESTER-V, W.E.F. 2021-2022

Recommended by the Board of Studies in Computer Science And

Approved by the Academic Council

Devrukh Shikshan Prasarak Mandal's
Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and
Vid. Dadasaheb Pitre Science College (Autonomous), Devrukh.
Tal. Sangameshwar, Dist. Ratnagiri-415804, Maharashtra,
India

:	Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre
	Commerce, and Vid. Dadasaheb Pitre Science
	College (Autonomous), Devrukh. Tal.
	Sangameshwar, Dist. Ratnagiri-415804,
:	University of Mumbai
:	Bachelor of Science
:	Computer Science
:	Third Year
:	Five
:	03
:	Artificial Intelligence
:	USCST51
:	Elective I
:	Any 12 th Pass seeking Admission to Degree
	Programme in adherence to Rules and Regulations
	of the University of Mumbai and Government of
	Maharashtra
:	40%
:	Formative and Summative
:	UG
:	70:30
:	CBCS
:	2021-2022

Syllabus for Third Year of Bachelor of Science in Computer Science

(With effect from the academic year 2021-2022)

SEMESTER-V Paper No.– 1

Course Title: Artificial Intelligence No. of Credits - 03

Type of Vertical: Elective I COURSE CODE: USCST51

Learning Outcomes Based on BLOOM's Taxonomy:

After completing the course, the learner will be able to			
Course Learning Outcome No.	Blooms Taxonomy	Course Learning Outcome	
CO-01	Ciideibtaila	After completion of this course, learner should get a clear understanding of AI and different search algorithms used for solving problems.	
CO-02	Remember	The learner should also get acquainted with different learning algorithms and models used in machine learning.	

Syllabus for Third Year of Bachelor of Science in Computer Science (With effect from the academic year 2021-2022)

SEMESTER-V Paper No.– 1

Course Title: Artificial Intelligence No. of Credits - 03

Type of Vertical: Elective I COURSE CODE: USCST51

COURSE CONTENT			
Unit No.	Content	Credits	No. of Lectures
I	What Is AI: Foundations, History and State of the Art of AI. Intelligent Agents: Agents and Environments, Nature of Environments, Structure of Agents. Problem Solving by searching: Problem-Solving Agents, Example Problems, Searching for Solutions, Uninformed Search Strategies, Informed (Heuristic) Search Strategies, Heuristic Functions	01	15
II	Learning from Examples: Forms of Learning, Supervised Learning, Learning Decision Trees, Evaluating and Choosing the Best Hypothesis, Theory of Learning, Regression and Classification with Linear Models, Artificial Neural Networks, Nonparametric Models, Support Vector Machines, Ensemble Learning, Practical Machine Learning	01	15
III	Learning probabilistic models: Statistical Learning, Learning with Complete Data, Learning with Hidden Variables: The EM Algorithm. Reinforcement learning: Passive Reinforcement Learning, Active Reinforcement Learning, Generalization in Reinforcement Learning, Policy Search, Applications of Reinforcement Learning.	01	15

Total	02	15
Total	03	43

Required Previous Knowledge

Students should know basic concepts related to computer and computer handling

Access to the Course

The course is available for all the students admitted for Bachelor of Science (Computer Science).

Forms of Assessment

The assessment of the course will be of Diagnostic, Formative and Summative type. At the beginning of the course diagnostic assessment will be carried out. The formative assessment will be used for the Continuous Internal Evaluation whereas the summative assessment will be conducted at the end of the term. The weightage for formative and summative assessment will be 60:40. The detailed pattern is as given below.

Semester End Evaluation (60 Marks) Question Paper Pattern

Time: 2 hours

Question	Unit/s	Question Pattern	Marks
No.			
Q.1	I ,II &III	MCQ/Fill in the blanks/One line sentence	10
Q.2	I	Descriptive Questions	20
Q.3	II	Descriptive Questions	20
Q4.	III	Descriptive Questions	20
		Total	70

Internal evaluation (30 Marks)

Sr. No.	Description	Marks
1	Classroom Tests	10
2	Project/ Viva/ Presentations/ Assignments	10
3	Attendance	10
	Total	30

Grading Scale

10 points grading scale will be used. The grading scale used is O to F. Grade O is the highest passing grade on the grading scale, and grade F is a fail. The Board of Examinations of the college reserves the right to change the grading scale.

Reference book:

• Artificial Intelligence: A Modern Approach, Stuart Russell and Peter Norvig, 3rd Edition, Pearson, 2010.

Text book:

• Techmax publication book

Additional References:

- Artificial Intelligence: Foundations of Computational Agents, David L Poole, Alan K. Mackworth, 2nd Edition, Cambridge University Press ,2017
 - . Artificial Intelligence, Kevin Knight and Elaine Rich, 3rd Edition, 2017
- The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani and Jerome Friedman, Springer, 2013

Course:	Practical of USCST51 (Credits: 1,
USCSP58	Lectures/Week: 3)
USCSP58	Practical shall be implemented in LISP or python 1. Implement Breadth first search algorithm for Romanian map problem. 2. Implement Iterative deep depth first search for Romanian map problem. 3. Implement A* search algorithm for Romanian map problem. 4. Implement recursive best-first search algorithm for Romanian map problem. 5. Implement decision tree learning algorithm for the restaurant waiting problem. 6. Implement feed forward back propagation neural network learning algorithm for the restaurant waiting problem. 7. Implement Adaboost ensemble learning algorithm for the restaurant waiting problem. 8. Implement Naive Bayes' learning algorithm for the restaurant waiting problem. 9. Implement passive reinforcement learning algorithm based on adaptive dynamic programming (ADP) for the 3 by 4 world problem 10. Implement passive reinforcement learning algorithm based on temporal differences (TD) for 3 by 4 world problem