

# FIRST-YEAR OF MASTER OF SCIENCE CHEMISTRY REVISED SYLLABUS ACCORDING TO CBCS NEP2020

COURSE TITLE: ORGANIC CHEMISTERY
SEMESTER-I
W.E.F. 2023-2024

# RECOMMENDED BY THE BOARD OF STUDIES IN CHEMISTRY AND

#### **APPROVED BY THE ACADEMIC COUNCIL**

Devrukh Shikshan Prasarak Mandal's
Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and
Vid. Dadasaheb Pitre Science College (Autonomous), Devrukh.
Tal. Sangameshwar, Dist. Ratnagiri-415804, Maharashtra,
India

### Academic Council Item No: 03 dated 08 July 2023

| Name of the Implementing          | : | Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre    |
|-----------------------------------|---|---------------------------------------------------|
| Institute                         |   | Commerce, and Vid. Dadasaheb Pitre Science        |
|                                   |   | College (Autonomous), Devrukh. Tal.               |
|                                   |   | Sangameshwar, Dist. Ratnagiri-415804,             |
| Name of the Parent University     | : | University of Mumbai                              |
| Name of the Programme             | : | Master of Science                                 |
| Name of the Department            | : | Chemistry                                         |
| Name of the Class                 | : | First Year                                        |
| Semester                          | : | First                                             |
| No. of Credits                    | : | 04                                                |
| Title of the Course               | : | Organic Chemistry                                 |
| Course Code                       | : | S501CHT                                           |
| Name of the Vertical in adherence | : | Compulsory Major                                  |
| to NEP 2020                       |   |                                                   |
| Eligibility for Admission         | : | Chemistry Graduate learner seeking Admission to   |
|                                   |   | Post Graduate Programme in adherence to Rules and |
|                                   |   | Regulations of the University of Mumbai and       |
|                                   |   | Government of Maharashtra                         |
| Passing Marks                     | : | 40%                                               |
| Mode of Assessment                | : | Formative and Summative                           |
| Level                             | : | PG                                                |
| Pattern of Marks Distribution for | : | 60:40                                             |
| SEE and CIA                       |   |                                                   |
| Status                            | : | NEP-CBCS                                          |
| To be implemented from Academic   | : | 2023-2024                                         |
| Year                              |   |                                                   |
| Ordinances /Regulations (if any)  |   |                                                   |

# Syllabus for First Year of Master of Science in Chemistry

(With effect from the academic year 2023-2024)

SEMESTER-I Paper No.- I

Course Title: Organic Chemistry

No. of Credits: 04

Type of Vertical: Compulsory Major COURSE CODE: S501CHT

## Learning Outcomes Based on BLOOM's Taxonomy:

| After completing the course, the learner will be able to |                    |                                                                                                                                |
|----------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Course Learning Outcome No.                              | Blooms<br>Taxonomy | Course Learning Outcome                                                                                                        |
| CLO-01                                                   | Remember           | explain aromaticity and Frost-Musulin diagrams.                                                                                |
| CLO-02                                                   | Understand         | explain acidity and basicity of organic compounds on the basis of pKa values and types of nucleophilic substitution reactions. |
| CLO-03                                                   | Apply              | draw mechanisms of organic reactions.                                                                                          |
| CLO-04                                                   | Analyse            | differentiate between reactivity and selectivity and identify chiral centres in various organic molecules.                     |
| CLO-05                                                   | Evaluate           | predict R-S nomenclature of chiral centres in acyclic and cyclic compounds.                                                    |
| CLO-06                                                   | Create             | explain use of various oxidising and reducing reagents in chemical reactions.                                                  |

# Syllabus for First Year of Master of Science in Chemistry

(With effect from the academic year 2023-2024)

SEMESTER-I Paper No.- I

Course Title: Organic Chemistry

No. of Credits: 04

Type of Vertical: Compulsory Major COURSE CODE: S501CHT

|               | COURSE CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                 |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------|--|
| Module<br>No. | le Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | No. of<br>Hours |  |
| 1             | UNIT-I: Physical Organic Chemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |                 |  |
|               | <ul> <li>Thermodynamic and kinetic requirements of a reaction: rate and equilibrium constants, reaction coordinate diagram, transition state (activated complex), nature of activated complex, Hammond postulate, Reactivity vs selectivity, Curtin-Hammett Principle, Microscopic reversibility, Kinetic vs thermodynamic control of organic reactions.</li> <li>Determining mechanism of a reaction: Product analysis, kinetic studies, use of isotopes (Kinetic isotope effect). Detection and trapping of intermediates, crossover experiments and stereochemical evidence.</li> <li>Acids and Bases: Factors affecting acidity and basicity: Electronegativity and inductive effect, resonance, bond strength, electrostatic effects, hybridization, aromaticity and solvation. Comparative study of acidity and basicity of organic compounds on the basis of pKa values, Leveling effect and non-aqueous solvents. Acid and base catalysis – general and specific catalysis with examples.</li> </ul> | 01 | 15              |  |
| 2             | UNIT-II: Nucleophilic substitution reactions and Aromaticity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |                 |  |
|               | <ul> <li>Nucleophilic substitution reactions:</li> <li>Aliphatic nucleophilic substitution: SN1, SN2, SNi reactions, mixed SN1 and SN2 and SET mechanisms. SN reactions involving NGP - participation by aryl rings, αand pi-bonds. Factors affecting these reactions: substrate, nucleophilicity, solvent, steric effect, hardsoft interaction, leaving group. Ambident nucleophiles. SNcA, SN1' and SN2' reactions. SN at sp2 (vinylic) carbon.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 01 | 15              |  |

| •     | Aromatic nucleophilic substitution: SNAr, SN1, benzyne mechanisms. Ipso, cine, tele and vicarious substitution  Ester hydrolysis: Classification, nomenclature and study of all eight mechanisms of acid and base catalyzed hydrolysis with suitable examples  Aromaticity: Structural, thermochemical, and magnetic criteria for aromaticity, including NMR characteristics of aromatic systems. Delocalization and aromaticity. Application of HMO theory to monocyclic conjugated systems. Frost-Musulin diagrams. Huckel's (4n+2) and 4n rules.  Aromatic and antiaromatic compounds up-to 18 carbon atoms. Homoaromatic compounds. Aromaticity of all benzenoid systems, heterocycles, metallocenes, azulenes, annulenes, aromatic ions and Fullerene (C60). |    |    |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
| 3 UNI | T-III: Stereochemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01 | 15 |
| 0     | Concept of Chirality: Recognition of symmetry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |    |
|       | elements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |    |
| 0     | Molecules with tri- and tetra-coordinate centers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |    |
|       | Compounds with carbon, silicon, nitrogen,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |    |
|       | phosphorous and sulphur chiral centers, relative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |    |
|       | configurational stabilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |    |
| 0     | Molecules with two or more chiral centers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |    |
|       | Constitutionally unsymmetrical molecules: erythro-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |    |
|       | threo and syn-anti systems of nomenclature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |    |
|       | Interconversion of Fischer, Sawhorse, Newman and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |    |
|       | Flying wedge projections. Constitutionally                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |    |
|       | symmetrical molecules with odd and even number of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |    |
|       | chiral centers: enantiomeric and meso forms, concept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |    |
|       | of stereogenic, chirotopic, and pseudoasymmetric centres. R-S nomenclature for chiral centres in acyclic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |    |
|       | and cyclic compounds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |    |
| 0     | Axial and planar chirality: Principles of axial and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |    |
|       | planar chirality. Stereochemical features and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |    |
|       | configurational descriptors (R,S) for the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |    |

|             | classes of compounds: allenes, alkylidene                                             |    |    |
|-------------|---------------------------------------------------------------------------------------|----|----|
|             | cycloalkanes, spirans, biaryls (buttressing effect)                                   |    |    |
|             | (including BINOLs and BINAPs), ansa compounds,                                        |    |    |
|             | cyclophanes, trans-cyclooctenes.                                                      |    |    |
|             | <ul> <li>Prochirality: Chiral and prochiral centres; prochiral</li> </ul>             |    |    |
|             | axis and prochiral plane. Homotopic, heterotopic                                      |    |    |
|             | (enantiotopic and diastereotopic) ligands and faces.                                  |    |    |
|             | Identification using substitution and symmetry criteria.                              |    |    |
|             | Nomenclature of stereoheterotopic ligands and faces.                                  |    |    |
|             | Symbols for stereoheterotopic ligands in molecules                                    |    |    |
|             | with i) one or more prochiral centres ii) a chiral as                                 |    |    |
|             | well as a prochiral centre, iii) a prochiral axis iv) a                               |    |    |
|             | prochiral plane v) pro-pseudoasymmetric centre.                                       |    |    |
|             | Symbols for enantiotopic and diastereotopic faces.                                    |    |    |
| 4 <b>Un</b> | nit-IV                                                                                | 01 | 15 |
|             | xidation and Reduction                                                                | 01 | 13 |
|             | Oxidation: General mechanism, selectivity, and                                        |    |    |
|             | important applications of the following:                                              |    |    |
|             | <ul> <li>Dehydrogenation: Dehydrogenation of C-C bonds</li> </ul>                     |    |    |
|             | including aromatization of six membered rings using                                   |    |    |
|             | metal (Pt, Pd, Ni) and organic reagents (chloranil, DDQ).                             |    |    |
|             | Oxidation of alcohols to aldehydes and ketones:                                       |    |    |
|             | Chromium reagents such as $K_2 Cr_2 O_7 H_2 SO_4$ (Jones                              |    |    |
|             | reagent), CrO <sub>3</sub> -pyridine (Collin's reagent), PCC (Corey's                 |    |    |
|             | reagent) and PDC (Cornforth reagent), hypervalent                                     |    |    |
|             | iodine reagents (IBX, Dess-Martin periodinane). DMSO                                  |    |    |
|             | based reagents (Swern oxidation), Corey-Kim oxidation -                               |    |    |
|             | advantages over Swern and limitations; and Pfitzner-                                  |    |    |
|             | Moffatt oxidation-DCC and DMSO and Oppenauer                                          |    |    |
|             | oxidation.                                                                            |    |    |
|             | Oxidation involving C-C bonds cleavage: Glycols                                       |    |    |
|             | using HIO <sub>4</sub> ; cycloalkanones using CrO <sub>3</sub> ; carbon-carbon        |    |    |
|             | double bond using ozone, KMnO <sub>4</sub> , CrO <sub>3</sub> , NaIO <sub>4</sub> and |    |    |
|             | OsO <sub>4</sub> ; aromatic rings using RuO <sub>4</sub> and NaIO <sub>4</sub> .      |    |    |
|             | Oxidation involving replacement of hydrogen by                                        |    |    |

| Total                                                                                                                              | 04 | 60 |
|------------------------------------------------------------------------------------------------------------------------------------|----|----|
| mediated reduction (Birch reduction) of aromatic compounds and acetylenes.                                                         |    |    |
| O Dissolving metal reductions: using Zn, Li, Na, and Mg under neutral and acidic conditions, Li/Na-liquid NH <sub>3</sub>          |    |    |
| agents including organic reducing agents (Hantzsch dihydropyridine).                                                               |    |    |
| selectrides).  o NH <sub>2</sub> NH <sub>2</sub> (diimide reduction) and other non-metal based                                     |    |    |
| NaCNBH <sub>3</sub> , diborane, 9-BBN, Na(OAc) <sub>3</sub> BH, aluminium reagents (LiAlH <sub>4</sub> , DIBAL-H, Red Al, L and K- |    |    |
| o <b>Metal hydride reduction:</b> Boron reagents (NaBH,                                                                            |    |    |
| Clemmensen reduction, Wolff-Kishner reduction and Huang-Minlon modification.                                                       |    |    |
| o Reduction of CO to CH <sub>2</sub> in aldehydes and ketones-                                                                     |    |    |
| <b>Reduction:</b> General mechanism, selectivity, and important applications of the following reducing reagents:                   |    |    |
| reaction), with peroxy acid (Baeyer-Villiger oxidation).                                                                           |    |    |
| Oxidation of aldehydes and ketones: with H <sub>2</sub> O <sub>2</sub> (Dakin                                                      |    |    |
| arylmethanes by CrO <sub>2</sub> Cl <sub>2</sub> (Etard oxidation).                                                                |    |    |
| <b>oxygen:</b> oxidation of CH <sub>2</sub> to CO by SeO <sub>2</sub> , oxidation of                                               |    |    |

#### **Access to the Course**

The course is available for all the students admitted for Master of Science.

#### **Methods of Assessment**

The assessment pattern would be 60:40, 60% for Semester End Examination (SEE) and 40% for Continuous Internal Assessment (CIA). The structure of the SEE and CIA would be as recommended by the Board of Studies and approved by the Board of Examination and the Academic Council of the college.

#### **References:**

- 1. Physical Organic Chemistry, Neil Isaacs
- 2. Modern Physical Organic Chemistry, Eric V. Anslyn and Dennis A. Dougherty
- 3. Comprehensive Organic chemistry, Barton and Ollis, Vol 1
- 4. Organic Chemistry, J. Claydens, N. Greeves, S. Warren and P. Wothers, Oxford University Press.
- 5. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Part A and B, Plenum Press.

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce and Vid. Dadasaheb Pitre Science College, Devrukh (An Autonomous College Affiliated with University of Mumbai)

- 6. Stereochemistry: Conformation and mechanism, P.S. Kalsi, New Age International, New Delhi.
- 7. Stereochemistry of carbon compounds, E.L Eliel, S.H Wilen and L.N Manden, Wiley.
- 8. Stereochemistry of Organic Compounds- Principles and Applications, D. Nasipuri. New International Publishers Ltd.
- 9. March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Michael B. Smith, Jerry March, Wiley.
- 10. Advanced Organic Chemistry: Reactions and mechanism, B. Miller and R. Prasad, Pearson Education.
- 11. Advanced Organic Chemistry: Reaction mechanisms, R. Bruckner, Academic Press.
- 12. Understanding Organic Reaction Mechanisms, Adams Jacobs, Cambridge University Press.
- 13. Writing Reaction Mechanism in organic chemistry, A. Miller, P.H. Solomons, Academic Press.
- 14. Principles of Organic Synthesis, R.O.C. Norman and J.M Coxon, Nelson Thornes.
- 15. Advanced Organic Chemistry: Reactions and mechanism, L.G. Wade, Jr., Maya Shankar
- 16. Mechanism in Organic Chemistry, Peter sykes, 6th edition onwards.
- 17. Modern Methods of Organic Synthesis, W. Carruthers and Iain Coldham, Cambridge University Press.
- 18. Organic Synthesis, Jagdamba Singh, L.D.S. Yadav, Pragati Prakashan