

FIRST-YEAR OF MASTER OF SCIENCE CHEMISTRY REVISED SYLLABUS ACCORDING TO CBCS NEP2020

COURSE TITLE: PHYSICAL CHEMISTRY-I SEMESTER-I W.E.F. 2023-2024

RECOMMENDED BY THE BOARD OF STUDIES IN CHEMISTRY AND APPROVED BY THE ACADEMIC COUNCIL

Devrukh Shikshan Prasarak Mandal's

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and Vid. Dadasaheb Pitre Science College (Autonomous), Devrukh. Tal. Sangameshwar, Dist. Ratnagiri-415804, Maharashtra, India

Name of the Implementing	:	Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre
Institute		Commerce, and Vid. Dadasaheb Pitre Science
		College (Autonomous), Devrukh. Tal.
		Sangameshwar, Dist. Ratnagiri-415804,
Name of the Parent University	:	University of Mumbai
Name of the Programme	:	Master of Science
Name of the Department	:	Chemistry
Name of the Class	:	First Year
Semester	:	First
No. of Credits	:	02
Title of the Course	:	Physical Chemistry-I
Course Code	:	S505CHT
Name of the Vertical in adherence	:	Elective
to NEP 2020		
Eligibility for Admission	:	Chemistry Graduate learner seeking Admission to
		Post Graduate Programme in adherence to Rules and
		Regulations of the University of Mumbai and
		Government of Maharashtra
Passing Marks	:	40%
Mode of Assessment	:	Formative and Summative
Level	:	PG
Pattern of Marks Distribution for	:	60:40
SEE and CIA		
Status	:	NEP-CBCS
To be implemented from Academic	:	2023-2024
Year		
Ordinances /Regulations (if any)		

Academic Council Item No: 03 dated 08 July 2023

Syllabus for First Year of Master of Science in Chemistry (With effect from the academic year 2023-2024)

SEMESTER-I

Course Title: Physical Chemistry-I

Type of Vertical: Elective

No. of Credits - 02 COURSE CODE: S505CHT

Learning Outcomes Based on BLOOM's Taxonomy:

After completing the course, the learner will be able to...

Course Learning Outcome No.	Blooms Taxonomy	Course Learning Outcome
CLO-01	Understand	explain Third law of thermodynamics and concept of entropy.
CLO-02	Apply	apply Quantum Mechanics to particles in one-, two- and three-dimensional box.
CLO-03	Analyse	calculate thermodynamic state functions and Schrödinger wave equation

Syllabus for First Year of Master of Science in Chemistry

(With effect from the academic year 2023-2024)

SEMESTER-I

Course Title: Physical Chemistry-I

No. of Credits - 02

Type of Vertical: Elective

COURSE CODE: S505CHT

COURSE CONTENT							
Module No.	Content	Credits	No. of Hours				
1	 Thermodynamics-I State function and exact differentials. Maxwell equations, Maxwell thermodynamic Relations; it's significance and applications to ideal gases, Joule Thomson experiment, Joule Thomson coefficient, inversion temperature, Joule Thomson coefficient in terms of van der Waals constants. Third law of Thermodynamics, Entropy change for a phase transition, absolute entropies, determination of absolute entropies in terms of heat capacity, standard molar entropies and their dependence on molecular mass and molecular structure, residual entropy. 	01	15				
2	 Quantum Chemistry Classical Mechanics, failure of classical mechanics: Need for Quantum Mechanics. Particle waves and Schrödinger wave equation, wave functions, properties of wave functions, Normalization of wave functions, orthogonality of wave functions. Operators and their algebra, linear and Hermitian operators, operators for the dynamic variables of a system such as, position, linear momentum, angular momentum, total energy, eigen functions, eigen values and eigen value equation, Schrödinger wave equation as the eigen value equation of the Hamiltonian operator, average value and the expectation value of a dynamic variable of the system, Postulates of Quantum Mechanics, Schrodinger's Time independent wave equation. 	01	15				

Total		2	30
recursion formula.			
wave function, expression for energy, u	ise of the		
equation, Hermite polynomials, expre	ssion for		
c) Harmonic oscillator, approximate soluti	on of the		
the energy levels.			
introduction of quantum number, degen	neracy of		
of the system, concept of qua	ntization,		
function of the system, expression for the	he energy		
separation of variables, Expression for	the wave		
b) Particle in a one-, two- and three-dimension	ional box,		
particle.			
a) Free particle, wave function and energy	of a free		
systems:	_		
• Application of quantum mechanics to the	following		

Access to the Course

The course is available for all the students admitted for Master of Science.

Methods of Assessment

The assessment pattern would be 60:40, 60% for Semester End Examination (SEE) and 40% for Continuous Internal Assessment (CIA). The structure of the SEE and CIA would be as recommended by the Board of Studies and approved by the Board of Examination and the Academic Council of the college.

References:

- Peter Atkins and Julio de Paula, Atkin's Physical Chemistry, 7th Edn., Oxford University Press, 2002.
- K.J. Laidler and J.H. Meiser, Physical Chemistry, 2nd Ed., CBS Publishers and Distributors, New Delhi, 1999.
- Robert J. Silby and Robert A. Alberty, Physical Chemistry, 3rd Edn., John Wiley and Sons (Asia) Pte. Ltd., 2002.
- 4. Ira R. Levine, Physical Chemistry, 5th Edn., Tata McGraw-Hill New Delhi, 2002.
- G.W. Castellan, Physical Chemistry, 3rd Edn., Narosa Publishing House, New Delhi, 1983.
- S. Glasstone, Text Book of Physical Chemistry, 2nd Edn., McMillan and Co. Ltd., London, 1962
- Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce and Vid. Dadasaheb Pitre Science College, Devrukh (An Autonomous College Affiliated with University of Mumbai)

- 7. B.K. Sen, Quantum Chemistry including Spectroscopy, Kalyani Publishers, 2003.
- 8. A.K. Chandra, Introductory Quantum Chemistry, Tata McGraw Hill, 1994.
- 9. R.K. Prasad, Quantum Chemistry, 2nd Edn., New Age International Publishers, 2000.
- S. Glasstone, Thermodynamics for Chemists, Affiliated East-West Press, New Delhi, 1964.
- W.G. Davis, Introduction to Chemical Thermodynamics A Non Calculus Approach, Saunders, Philadelphia, 19772.
- Peter A. Rock, Chemical Thermodynamics, University Science Books, Oxford University Press, 1983.
- Ira N. Levine, Quantum Chemistry, 5th Edn., Pearson Education (Singapore) Pte. Ltd., Indian Branch, New Delhi, 2000.
- Thomas Engel and Philip Reid, Physical Chemistry, 3rd Edn., Pearson Education Limited 2013.
- 15. D.N. Bajpai, Advanced Physical Chemistry, S. Chand 1st Edn., 1992.
- Bockris, John O'M., Reddy, Amulya K.N., Gamboa-Aldeco, Maria E., Modern Electrochemistry, 2A, Plenum Publishers, 1998.
- 17. Physical Chemistry by Gurtu and Gurtu