

FIRST-YEAR OF MASTER OF SCIENCE CHEMISTRY REVISED SYLLABUS ACCORDING TO CBCS NEP2020

COURSE TITLE: PHYSICAL CHEMISTRY-II SEMESTER-I W.E.F. 2023-2024

RECOMMENDED BY THE BOARD OF STUDIES IN CHEMISTRY AND APPROVED BY THE ACADEMIC COUNCIL

Devrukh Shikshan Prasarak Mandal's

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and Vid. Dadasaheb Pitre Science College (Autonomous), Devrukh. Tal. Sangameshwar, Dist. Ratnagiri-415804, Maharashtra, India

Name of the Implementing	:	Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre
Institute		Commerce, and Vid. Dadasaheb Pitre Science
		College (Autonomous), Devrukh. Tal.
		Sangameshwar, Dist. Ratnagiri-415804,
Name of the Parent University	:	University of Mumbai
Name of the Programme	:	Master of Science
Name of the Department	:	Chemistry
Name of the Class	:	First Year
Semester	:	First
No. of Credits	:	02
Title of the Course	:	Physical Chemistry-II
Course Code	:	S506CHT
Name of the Vertical in adherence	:	Elective
to NEP 2020		
Eligibility for Admission	:	Chemistry Graduate learner seeking Admission to
		Post Graduate Programme in adherence to Rules and
		Regulations of the University of Mumbai and
		Government of Maharashtra
Passing Marks	:	40%
Mode of Assessment	:	Formative and Summative
Level	:	PG
Pattern of Marks Distribution for	:	60:40
SEE and CIA		
Status	:	NEP-CBCS
To be implemented from Academic	:	2023-2024
Year		
Ordinances /Regulations (if any)		

Academic Council Item No: 03 dated 08 July 2023

Syllabus for First Year of Master of Science in Chemistry (With effect from the academic year 2023-2024)

SEMESTER-I

Course Title: Physical Chemistry-II

Type of Vertical: Elective

No. of Credits - 02 COURSE CODE: S506CHT

Learning Outcomes Based on BLOOM's Taxonomy:

After completing the course, the learner will be able to...

Course Learning Outcome No.	Blooms Taxonomy	Course Learning Outcome
CLO-01	Understand	explain Debye-Hückel theory of activity coefficient.
CLO-02	Apply	solve rate law expressions for organic and inorganic reactions.
CLO-03	Analyse	deduce Goldmann equation.

Syllabus for First Year of Master of Science in Chemistry

(With effect from the academic year 2023-2024)

SEMESTER-I

Course Title: Physical Chemistry-II

No. of Credits - 02

Type of Vertical: Elective

COURSE CODE: S506CHT

Module No.	Content	Credits	No. of Hours
Module No. 1	Content Chemical Dynamics-I • Composite Reactions: Recapitulation: Rate laws, Differential rate equations Consecutive reactions, Steady state Approximation, rate determining steps, Microscopic Reversibility and Detailed Balanced • Chain reactions-chain initiation processes. Some inorganic mechanisms: formation and decomposition of phosgene, decomposition of ozone, Reaction between Hydrogen and Bromine. Some general examples Organic Decompositions: Decomposition of ethane, decomposition of acetaldehyde Gas phase combustion: Reaction between hydrogen and oxygen, Semenov – Hinshelwood and Thompson mechanism, Explosion limits and factors affecting explosion limits. • Polymerization reactions: Kinetics of stepwise polymerization for stepwise reaction. Kinetics of free radical chain polymerization, Kinetic chain length and estimation of average no. of monomer units in the polymer produced by chain polymerization. • Reaction in Gas Phase	Credits	No. of Hours
	 estimation of average no. of monomer units in the polymer produced by chain polymerization. Reaction in Gas Phase Unimolecular Reactions: Lindeman-Hinshelwood theory, Rice-Ramsperger-Kasssel (RRK) theory, Rice-Ramsperger-Kassel Marcus (RRKM) theory. 		

2	Electrochemistry		
	• Debye-Hückel theory of activity coefficient, Debye-		
	Hückel limiting law and its extension to higher		
	concentration (derivations are expected).		
	• Electrolytic conductance and ionic interaction,		
	relaxation effect, Debye-Hückel-Onsager equation		
	(derivation expected). Validity of this equation for		
	aqueous and non- aqueous solution, deviations from		
	Onsager equation, Debye -Falkenhagen effect		
	(dispersion of conductance at high frequencies), Wien		
	effect.	01	15
	cells High temperature fuel cells [Solid_Ovide Fuel		
	Cells (SOFC) and Molten Carbonate Fuel Cells		
	• Bio-electrochemistry: Introduction cells and		
	membranes, membrane potentials, theory of		
	membrane potentials, interfacial electron transfer in		
	biological systems, adsorption of proteins onto metals		
	from solution, electron transfer from modified metals		
	to dissolved protein in solution, enzymes as electrodes,		
	electrochemical enzyme-catalysed oxidation of		
	styrene. Goldmann equation. (Derivations are		
	expected)		
	Total	2	30

Access to the Course

The course is available for all the students admitted for Master of Science.

Methods of Assessment

The assessment pattern would be 60:40, 60% for Semester End Examination (SEE) and 40% for Continuous Internal Assessment (CIA). The structure of the SEE and CIA would be as recommended by the Board of Studies and approved by the Board of Examination and the Academic Council of the college.

References:

- Peter Atkins and Julio de Paula, Atkin's Physical Chemistry, 7th Edn., Oxford University Press, 2002.
- 2. K.J. Laidler and J.H. Meiser, Physical Chemistry, 2nd Ed., CBS Publishers and Distributors, New Delhi, 1999.
- Robert J. Silby and Robert A. Alberty, Physical Chemistry, 3rd Edn., John Wiley and Sons (Asia) Pte. Ltd., 2002.
- 4. Ira R. Levine, Physical Chemistry, 5th Edn., Tata McGraw-Hill New Delhi, 2002.
- G.W. Castellan, Physical Chemistry, 3rd Edn., Narosa Publishing House, New Delhi, 1983.
- S. Glasstone, Text Book of Physical Chemistry, 2nd Edn., McMillan and Co. Ltd., London, 1962
- 7. B.K. Sen, Quantum Chemistry including Spectroscopy, Kalyani Publishers, 2003.
- 8. A.K. Chandra, Introductory Quantum Chemistry, Tata McGraw Hill, 1994.
- 9. R.K. Prasad, Quantum Chemistry, 2nd Edn., New Age International Publishers, 2000.
- S. Glasstone, Thermodynamics for Chemists, Affiliated East-West Press, New Delhi, 1964.
- W.G. Davis, Introduction to Chemical Thermodynamics A Non Calculus Approach, Saunders, Philadelphia, 19772.
- Peter A. Rock, Chemical Thermodynamics, University Science Books, Oxford University Press, 1983.
- Ira N. Levine, Quantum Chemistry, 5th Edn., Pearson Education (Singapore) Pte. Ltd., Indian Branch, New Delhi, 2000.
- Thomas Engel and Philip Reid, Physical Chemistry, 3rd Edn., Pearson Education Limited 2013.
- 15. D.N. Bajpai, Advanced Physical Chemistry, S. Chand 1st Edn., 1992.
- Bockris, John O'M., Reddy, Amulya K.N., Gamboa-Aldeco, Maria E., Modern Electrochemistry, 2A, Plenum Publishers, 1998.
- 17. Physical Chemistry by Gurtu and Gurtu