

# FIRST-YEAR OF MASTER OF SCIENCE CHEMISTRY REVISED SYLLABUS ACCORDING TO CBCS NEP2020

## COURSE TITLE: THEORETICAL ORGANIC CHEMISTRY-I SEMESTER-III W.E.F. 2024-25

## RECOMMENDED BY THE BOARD OF STUDIES IN CHEMISTRY AND APPROVED BY THE ACADEMIC COUNCIL

Devrukh Shikshan Prasarak Mandal's

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and Vid. Dadasaheb Pitre Science College (Autonomous), Devrukh. Tal. Sangameshwar, Dist. Ratnagiri-415804, Maharashtra, India

| Name of the Implementing          | : | Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre    |
|-----------------------------------|---|---------------------------------------------------|
| Institute                         |   | Commerce, and Vid. Dadasaheb Pitre Science        |
|                                   |   | College (Autonomous), Devrukh. Tal.               |
|                                   |   | Sangameshwar, Dist. Ratnagiri-415804,             |
| Name of the Parent University     | : | University of Mumbai                              |
| Name of the Programme             | : | Master of Science                                 |
| Name of the Department            | : | Chemistry                                         |
| Name of the Class                 | : | Second Year                                       |
| Semester                          | : | Third                                             |
| No. of Credits                    | : | 04                                                |
| Title of the Course               | : | Theoretical Organic Chemistry-I                   |
| Course Code                       | : | S601CHT                                           |
| Name of the Vertical in adherence | : | Compulsory Major                                  |
| to NEP 2020                       |   |                                                   |
| Eligibility for Admission         | : | Chemistry Graduate learner seeking Admission to   |
|                                   |   | Post Graduate Programme in adherence to Rules and |
|                                   |   | Regulations of the University of Mumbai and       |
|                                   |   | Government of Maharashtra                         |
| Passing Marks                     | : | 40%                                               |
| Mode of Assessment                | : | Formative and Summative                           |
| Level                             | : | PG                                                |
| Pattern of Marks Distribution for | : | 60:40                                             |
| SEE and CIA                       |   |                                                   |
| Status                            | : | NEP-CBCS                                          |
| To be implemented from Academic   | : | 2024-2025                                         |
| Year                              |   |                                                   |
| Ordinances /Regulations (if any)  |   |                                                   |

## Academic Council Item No:

## Syllabus for Second Year of Master of Science in Chemistry

(With effect from the academic year 2024-2025)

SEMESTER-III Course Title: Theoretical Organic Chemistry-I Type of Vertical: Compulsory Major Paper No.- I No. of Credits: 04 COURSE CODE: S601CHT

### Learning Outcomes Based on BLOOM's Taxonomy:

| After completing the course, the learner will be able to |                    |                                                                                                                                                                                                                                                |  |
|----------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Course<br>Learning<br>Outcome No.                        | Blooms<br>Taxonomy | Course Learning Outcome                                                                                                                                                                                                                        |  |
| CLO-01                                                   | Remember           | draw mechanisms of pericyclic and photochemical reactions.                                                                                                                                                                                     |  |
| CLO-02                                                   | Understand         | explain method of generation, structure and stability of<br>intermediates, approaches on different pericyclic reaction,<br>symmetry on Frontier Molecular orbital diagrams, effect of<br>conformation on reactivity of cyclohexane derivative. |  |
| CLO-03                                                   | Apply              | predict point group of different organic compounds and stereochemistry of fused ring and bridged ring compounds.                                                                                                                               |  |
| CLO-04                                                   | Analyse            | differentiate the type of pericyclic reaction.                                                                                                                                                                                                 |  |

## Syllabus for Second Year of Master of Science in Chemistry

(With effect from the academic year 2024-2025)

SEMESTER-III

Paper No.- I

Course Title: Theoretical Organic Chemistry-I

**Type of Vertical: Compulsory Major** 

No. of Credits: 04

## COURSE CODE: S601CHT

| COURSE CONTENT |                                                                          |         |                 |  |  |  |
|----------------|--------------------------------------------------------------------------|---------|-----------------|--|--|--|
| Module<br>No.  | Content                                                                  | Credits | No. of<br>Hours |  |  |  |
| 1              | UNIT-I: Organic reaction mechanisms                                      |         |                 |  |  |  |
|                | • Organic reactive intermediates: Methods of                             |         |                 |  |  |  |
|                | generation, Structure, Stability and Important reactions                 |         |                 |  |  |  |
|                | involving Carbocations, Nitrenes, Carbenes, Arynes                       |         |                 |  |  |  |
|                | and Ketenes.                                                             |         |                 |  |  |  |
|                | • Neighbouring group participation: Mechanism and                        |         |                 |  |  |  |
|                | effects of anchimeric assistance, NGP by unshared/                       |         |                 |  |  |  |
|                | lone pair electrons, $\pi$ -electrons, aromatic rings, $\sigma$ -        |         |                 |  |  |  |
|                | bonds with special reference to norbornyl and                            |         |                 |  |  |  |
|                | bicyclo[2.2.2]octyl cation systems (formation of non-                    |         |                 |  |  |  |
|                | classical carbocation)                                                   |         |                 |  |  |  |
|                | • Role of FMOs in organic reactivity: Reactions                          | 01      | 15              |  |  |  |
|                | involving hard and soft electrophiles and nucleophiles,                  |         |                 |  |  |  |
|                | ambident nucleophiles, Ambident electrophiles, the $\boldsymbol{\alpha}$ |         |                 |  |  |  |
|                | effect.                                                                  |         |                 |  |  |  |
|                | o Pericyclic reactions: Classification of pericyclic                     |         |                 |  |  |  |
|                | reactions; thermal and photochemical reactions. Three approaches:        |         |                 |  |  |  |
|                | Evidence for the concertedness of bond making and                        |         |                 |  |  |  |
|                | breaking                                                                 |         |                 |  |  |  |
|                | Symmetry-Allowed and Symmetry-Forbidden                                  |         |                 |  |  |  |
|                | Reactions –                                                              |         |                 |  |  |  |
|                | ☐ The Woodward-Hoffmann Rules-Class by Class                             |         |                 |  |  |  |
|                | · · · · · · · · · · · · · · · · · · ·                                    |         |                 |  |  |  |

|   |      | □ The generalised Woodward-Hoffmann Rule                       |      |    |
|---|------|----------------------------------------------------------------|------|----|
|   |      | Explanations for Woodward-Hoffmann Rules                       | l    |    |
|   |      | $\hfill\square$ The Aromatic Transition structures [Huckel and | l    |    |
|   |      | Mobius]                                                        | l    |    |
|   |      | □ Frontier Orbitals                                            | l    |    |
|   |      | $\Box$ Correlation Diagrams, FMO and PMO approach              | l    |    |
|   | 0    | Molecular orbital and symmetry, Frontier orbital of            | l    |    |
|   |      | ethylene, 1,3-butadiene, 1,3,5-hexatriene and allyl            | l    |    |
|   |      | system                                                         |      |    |
| 2 | UNIT | II: Pericyclic reactions                                       | <br> |    |
|   | 0    | Cycloaddition reactions: Supra and antra facial                | l    |    |
|   |      | additions, 4n and 4n+2 systems, 2+2 additions of               |      |    |
|   |      | ketenes. Diels-Alder reactions, 1, 3-Dipolar                   | l    |    |
|   |      | cycloaddition and cheletropic reactions, ene reaction,         |      |    |
|   |      | retro-Diels-Alder reaction, regioselectivity,                  |      |    |
|   |      | periselectivity, torquoselectivity, site selectivity and       |      |    |
|   |      | effect of substituents in Diels-Alder reactions.               |      |    |
|   |      | Other Cycloaddition Reactions- [4+6] Cycloadditions,           | l    |    |
|   |      | Ketene Cycloaddition, Allene Cycloadditions,                   | l    |    |
|   |      | Carbene Cycloaddition, Epoxidation and Related                 | 01   | 15 |
|   |      | Cycloadditions.                                                | l    |    |
|   | 0    | Electrocyclic reactions: Conrotatory and disrotatary           |      |    |
|   |      | motions, $4n\pi$ and $(4n+2)\pi$ electron and allyl systems.   | l    |    |
|   | 0    | Sigmatropic rearrangements: H-shifts and C-shifts,             | l    |    |
|   |      | supra and antarafacial migrations, retention and               | l    |    |
|   |      | inversion of configurations. Cope (including oxy               | l    |    |
|   |      | Cope and aza-Cope) and Claisen rearrangements.                 | l    |    |
|   |      | Formation of Vitamin D from 7-dehydrocholesterol,              | ſ    |    |
|   |      | synthesis of citral using pericyclic reaction,                 | ſ    |    |
|   |      | conversion of Endiandric acid E to Endiandric acid A.          |      |    |

| 3 | UNIT-III: Stereochemistry-I                                             |    |    |
|---|-------------------------------------------------------------------------|----|----|
|   | • Classification of point groups: Based on symmetry                     |    |    |
|   | elements with examples (nonmathematical treatment).                     |    |    |
|   | • Conformational analysis of medium rings: Eight to                     |    |    |
|   | ten membered rings and their unusual properties, I-                     |    |    |
|   | strain, transannular reactions.                                         |    |    |
|   | $\circ$ Stereochemistry of fused ring and bridged ring                  |    |    |
|   | <b>compounds:</b> Decalins, Hydrindanes,                                |    |    |
|   | Perhydroanthracenes, Steroids, and Bredt's rule.                        | 01 | 15 |
|   | • Anancomeric systems, Effect of conformation on                        |    |    |
|   | reactivity of cyclohexane derivatives in the                            |    |    |
|   | following reactions (including mechanism):                              |    |    |
|   | Electrophilic addition, Elimination, Molecular                          |    |    |
|   | rearrangements, of cyclohexanones (with LiAlH4,                         |    |    |
|   | selectride and MPV reduction) and Oxidation of                          |    |    |
|   | cyclohexanols.                                                          |    |    |
| 4 | Unit-IV: Photochemistry                                                 |    |    |
|   | • Principles of photochemistry: Quantum yield,                          |    |    |
|   | Electronic states and transitions, Selection rules,                     |    |    |
|   | modes of dissipation of energy (Jablonski diagram),                     |    |    |
|   | Electronic energy transfer: Photosensitization and                      |    |    |
|   | Quenching process.                                                      |    |    |
|   | • Photochemistry of carbonyl compounds: $\pi \rightarrow \pi^*$ ,       |    |    |
|   | $n \rightarrow \pi^*$ transitions, Norrish- I and Norrish-II cleavages, |    |    |
|   | Paterno-Buchi reaction. Photoreduction, calculation of                  |    |    |
|   | quantum yield, photochemistry of enones,                                |    |    |
|   | photochemical rearrangements of $\alpha$ , $\beta$ -unsaturated         |    |    |
|   | ketones and cyclohexadienones. Photo Fries                              | 01 | 15 |
|   | rearrangement, Barton reaction.                                         |    |    |
|   | • Photochemistry of olefins: cis-trans isomerizations,                  |    |    |
|   | Dimerization's, Hydrogen abstraction, Addition and                      |    |    |
|   | Di- $\pi$ - methane rearrangement including aza-di- $\pi$ -             |    |    |
|   | methane. Photochemical Cross-Coupling of Alkenes,                       |    |    |
|   | Photodimerisation of alkenes.                                           |    |    |
|   | • Photochemistry of arenes: 1,2-, 1,3- and 1,4-                         |    |    |

| additions. Photocycloadditions of aromatic Rings. |    |    |
|---------------------------------------------------|----|----|
| • Singlet oxygen and photo-oxygenation reactions. |    |    |
| Photochemically induced Radical Reactions.        |    |    |
| Chemiluminescence.                                |    |    |
| Total                                             | 04 | 60 |

### Access to the Course

The course is available for all the students admitted for Second Year of Master of Science.

#### **Methods of Assessment**

The assessment pattern would be 60:40, 60% for Semester End Examination (SEE) and 40% for Continuous Internal Assessment (CIA). The structure of the SEE and CIA would be as recommended by the Board of Studies and approved by the Board of Examination and the Academic Council of the college.

### **References:**

- 1. March's Advanced Organic Chemistry, Jerry March, sixth edition, 2007, John Wiley and sons.
- 2. A guide to mechanism in Organic Chemistry, 6th edition, 2009, Peter Sykes, Pearson education, New Delhi.
- 3. Advanced Organic Chemistry: Reaction Mechanisms, R. Bruckner, Academic Press (2002).
- 4. Mechanism and theory in Organic Chemistry, T. H. Lowry and K. C. Richardson, Harper and Row.
- 5. Organic Reaction Mechanism, 4th edition, V. K. Ahluvalia, R. K. Parashar, Narosa Publication.
- 6. Reaction Mechanism in Organic Chemistry, S.M. Mukherji, S.P. Singh, Macmillan Publishers, India.
- Carbenes, Nitrenes and Arynes. Von T. L. Gilchrist, C. W. Rees. Th. Nelson and Sons Ltd., London 1969.
- 8. Organic reactive intermediates, Samuel P. MacManus, Academic Press.
- 9. Organic Chemistry, J. Clayden, S. Warren, N. Greeves, P. Wothers, 1st Edition, Oxford University Press (2001).

- Organic Chemistry, Seventh Edition, R.T. Morrison, R. N. Boyd & S. K. Bhattacharjee, Pearson.Advanced Organic Chemistry: Reactions & Mechanisms, second edition, B. Miller and R. Prasad, Pearson.
- 11. Organic reactions & their mechanisms, third revised edition, P.S. Kalsi, New Age International Publishers.
- 12. Pericyclic Reactions, S. Sankararaman, Wiley VCH, 2005.
- 13. Advanced organic chemistry, Jagdamba Singh L. D. S. Yadav, Pragati Prakashan, 2011
- 14. Pericyclic reactions, Ian Fleming, Oxford university press, 1999.
- 15. Pericyclic reactions-A mechanistic approach, S. M. Mukherji, Macmillan Co. of India 1979.
- 16. Organic chemistry, 8th edition, John McMurry
- Modern methods of Organic Synthesis, 4th Edition W. Carruthers and Iain Coldham, Cambridge University Press 2004
- Modern physical chemistry, Eric V Anslyn, Dennis A. Dougherty, University science books,2006
- 19. Physical Organic Chemistry, N. S. Isaacs, ELBS/Longman
- 20. Stereochemistry of Carbon Compounds: Principles and Applications, D, Nasipuri, 3rd edition, New Age International Ltd.
- 21. Stereochemistry of Organic Compounds, Ernest L. Eliel and Samuel H. Wilen, Wiley-India edit.
- 22. Stereochemistry, P. S. Kalsi, 4th edition, New Age International Ltd
- 23. Organic Stereochemistry, M. J. T. Robinson, Oxford University Press, New Delhi, India edition, 2005
- 24. Bioorganic, Bioinorganic and Supramolecular chemistry, P.S. Kalsi and J.P. Kalsi. New Age International Publishers
- 25. Supramolecular Chemistry; Concepts and Perspectives, J. M. Lehn, VCH.
- 26. Crown ethers and analogous compounds, M. Hiraoka, Elsevier, 1992.
- 27. Fundamentals of Photochemistry, K. K. Rohtagi-Mukherji, Wiley- Eastern
- 28. Essentials of Molecular Photochemistry, A. Gilbert and J. Baggott, Blackwell Sciertific Publication.