

FIRST-YEAR OF MASTER OF SCIENCE CHEMISTRY REVISED SYLLABUS ACCORDING TO CBCS NEP2020

COURSE TITLE: SYNTHETIC ORGANIC CHEMISTRY-I SEMESTER-III W.E.F. 2024-25

RECOMMENDED BY THE BOARD OF STUDIES IN CHEMISTRY AND APPROVED BY THE ACADEMIC COUNCIL

Devrukh Shikshan Prasarak Mandal's

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and Vid. Dadasaheb Pitre Science College (Autonomous), Devrukh. Tal. Sangameshwar, Dist. Ratnagiri-415804, Maharashtra, India

Name of the Implementing	:	Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre
Institute		Commerce, and Vid. Dadasaheb Pitre Science
		College (Autonomous), Devrukh. Tal.
		Sangameshwar, Dist. Ratnagiri-415804,
Name of the Parent University	:	University of Mumbai
Name of the Programme	:	Master of Science
Name of the Department	:	Chemistry
Name of the Class	:	Second Year
Semester	:	Third
No. of Credits	:	04
Title of the Course	:	Synthetic Organic Chemistry-I
Course Code	:	S602CHT
Name of the Vertical in adherence	:	Compulsory Major
to NEP 2020		
Eligibility for Admission	:	Chemistry Graduate learner seeking Admission to
		Post Graduate Programme in adherence to Rules and
		Regulations of the University of Mumbai and
		Government of Maharashtra
Passing Marks	:	40%
Mode of Assessment	:	Formative and Summative
Level	:	PG
Pattern of Marks Distribution for	:	60:40
SEE and CIA		
Status	:	NEP-CBCS
To be implemented from Academic	:	2024-2025
Year		
Ordinances /Regulations (if any)		

Academic Council Item No:

Syllabus for Second Year of Master of Science in Chemistry

(With effect from the academic year 2024-2025)

SEMESTER-III

Course Title: Synthetic Organic Chemistry-I Type of Vertical: Compulsory Major Paper No.- II No. of Credits: 04 COURSE CODE: S602CHT

Learning Outcomes Based on BLOOM's Taxonomy:

After completing the course, the learner will be able to			
Course Learning Outcome No.	Blooms Taxonomy	Course Learning Outcome	
CLO-01	Remember	draw mechanisms of organic reactions such as name reaction, reaction related to free radicals, enamine and ylides.	
CLO-02	Understand	explain stability, reactivity, structural and stereochemical properties of free radicals, enamines, ylides and organometallic reaction.	
CLO-03	Apply	construct mechanism with application of multicomponent reaction.	
CLO-04	Analyse	differentiate between enamines and enolates.	

Syllabus for Second Year of Master of Science in Chemistry

(With effect from the academic year 2024-2025)

SEMESTER-III

Paper No.- II

Course Title: Synthetic Organic Chemistry-I

Type of Vertical: Compulsory Major

No. of Credits: 04 COURSE CODE: S02CHT

	COURSE CONTENT			
Module No.	Content	Credits	No. of Hours	
1	UNIT-I: Name reactions with mechanism and			
	application			
	 Mukaiyama esterification, Mitsonobu reaction, Darzen's Glycidic Ester syntheis, Ritter reaction, Yamaguchi esterification, Peterson olefination. Domino reactions: Characteristics; Nazerov cyclization Multicomponent reactions: Strecker Synthesis, Ugi 4CC, Biginelli synthesis, Hantzsch synthesis, Pictet- Spengler synthesis Click Reactions: Characteristics; Huisgen 1,3- Dipolar Cycloaddition 	01	15	
2	 UNIT-II: Radicals in organic synthesis Introduction: Generation, stability, reactivity and structural and stereochemical properties of free radicals, Persistent and charged radicals, Electrophilic and nucleophilic radicals. Radical Initiators: Azobisisobutyronitrile (AIBN) and Dibenzoyl peroxide. Characteristic reactions: Free radical substitution, addition to multiple bonds. Radical chain reactions, Radical halogenation of hydrocarbons (Regioselectivity), radical cyclizations, autoxidations: 	01	15	

				1
		synthesis of cumene hydroperoxide from cumene.		
	0	Radicals in synthesis: Inter and intra molecular C-C		
		bond formation via mercuric hydride, tin hydride,		
		thiol donors. Cleavage of C-X, C-Sn, C-Co, C-S, O-O		
		bonds. Oxidative coupling, C-C bond formation in		
		aromatics: SRNAr reactions.		
	0	Hunsdiecker reaction, Pinacol coupling, McMurry		
		coupling, Sandmeyer reaction, Acyloin condensation.		
3	UNIT	-III: Enamines, Ylides and α-C-H functionalization		
	0	Enamines: Generation & application in organic		
		synthesis with mechanistic pathways, Stork enamine		
		reaction. Reactivity, comparison between enamines		
		and enolates. Synthetic reactions of enamines		
		including asymmetric reactions of chiral enamines		
		derived from chiral secondary amines.		
	0	Phosphorus, Sulfur and Nitrogen Ylides:		
		Preparation and their synthetic applications along with		
		their stereochemical aspects. Wittig reaction, Horner-	01	15
		Wadsworth Emmons Reaction, Barton-Kellogg		
		olefination.		
	0	α -C-H functionalization: By nitro, sulfoxide, sulfone		
		and phosphonate groups: generation of carbanions by		
		strong bases (LDA/n-butyl lithium) and applications		
		in C-C bond formation. Bamford-Stevens reaction,		
		Julia olefination and its modification, Seyferth–Gilbert		
		homologation, Steven's rearrangement.		
4	Unit-I	V: Metals / Non-metals in organic synthesis		
	0	Mercury in organic synthesis: Mechanism and		
		regiochemistry of oxymercuration and demercuration		
		of alkenes, mercuration of aromatics, transformation		
		of aryl mercurials to aryl halides. Organomercurials as		
		carbene transfer reagents.		
	0	Organoboron compounds: Mechanism and		
		regiochemistry of hydroboration of alkenes and		

	Total	04	60
	activating groups.		
	unsaturation, selenoxide and seleno acetals as α -C-H		
	selenols/selenoxide, selenoxide elimination to create		
0	Selenium in organic synthesis: Preparation of		
	C atom.		
	formation, in replacement of halogen by H at the same		
	allyl tin compounds; application in C-C bond		
0	Organotin compounds: Preparation of alkenyl and		
	contraction reactions.		
	(Michael reaction, Mukaiyama aldol reaction), in ring		
0	Silyl enol ethers: Application: As nucleophiles		
	organic synthesis.		
	cations as intermediates. Iodotrimethylsilane in		
	alkenyl silanes, aryl silanes and allyl silanes. β-silyl		
	important bond-forming reactions of alkyl silanes,	01	15
	the reactivity of organosilicons, preparation and		
0	Organosilicons: Salient features of silicon governing		
	diborane.		
	(CBS catalyst) and functional group reduction by		
	reagents, 9-BBN hydroboration, oxazaborolidine		

Access to the Course

The course is available for all the students admitted for Second Year of Master of Science.

Methods of Assessment

The assessment pattern would be 60:40, 60% for Semester End Examination (SEE) and 40% for Continuous Internal Assessment (CIA). The structure of the SEE and CIA would be as recommended by the Board of Studies and approved by the Board of Examination and the Academic Council of the college.

References:

- 1. Advanced Organic Chemistry, Part A and Part B: Reaction and
- 2. Synthesis, Francis A. Carey, Richard J. Sundberg, 5th Edition, Springer Verlag

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce and Vid. Dadasaheb Pitre Science College, Devrukh (An Autonomous College Affiliated with University of Mumbai)

- 3. Modern Methods of Organic Synthesis, 4th Edition, W. Carruthers and Iain Coldham, Cambridge University Press, 2004.
- Chem.Rev. 2002, 102, 2227-2302, Rare Earth Metal Triflates in Organic Synthesis, S. Kobayashi, M. Sugiura, H. Kitagawa, and W.W.L. Lam.
- 5. Organic Chemistry, Clayden Greeves Warren and Wothers, Oxford Press (2001).
- 6. Moder Organic Synthesis: An Introduction, G.S. Zweifel and M.H. Nantz, W.H. Freeman and Company, (2007).
- 7. Advanced Organic Chemistry: Reaction Mechanism, R. Bruckner, Academic Press (2002).
- Principles of Organic Synthesis, R.O.C. Norman & J. M. Coxon, 3rd Edn., Nelson Thornes
- 9. Organic Chemistry, 7th Edn, R. T. Morrison, R. N. Boyd, & S. K.Bhattacharjee, Pearson
- Strategic Applications of Name Reactions in Organic Synthesis, L. Kurti & B. Czako (2005), Elsevier Academic Press
- Advanced Organic Chemistry: Reactions & Mechanisms, 2nd Edn., B. Miller & R. Prasad, Pearson
- 12. Organic reactions and their mechanisms, 3rd revisededition, P.S. Kalsi, New Age International Publishers
- Organic Synthesis: The Disconnection Approach, Stuart Warren, John Wiley & Sons, 2004
- Name Reactions and Reagents in Organic Synthesis, 2nd Edn., Bradford P. Mundy, Michael G. Ellard, and Frank Favoloro, Jr., Wiley-Interscience
- 15. Name Reactions, Jie Jack Lie, 3rd Edn., Springer
- 16. Organic Electrochemistry, H. Lund, and M. Baizer, 3rd Edn., Marcel Dekker.