

SECOND-YEAR OF MASTER OF SCIENCE CHEMISTRY REVISED SYLLABUS ACCORDING TO CBCS NEP2020

COURSE TITLE: QUALITY IN ANALYTICAL CHEMISTRY-II SEMESTER-IV W.E.F. 2024-2025

RECOMMENDED BY THE BOARD OF STUDIES IN CHEMISTRY AND APPROVED BY THE ACADEMIC COUNCIL

Devrukh Shikshan Prasarak Mandal's

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and Vid. Dadasaheb Pitre Science College (Autonomous), Devrukh. Tal. Sangameshwar, Dist. Ratnagiri-415804, Maharashtra, India

Name of the Implementing	:	Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre
Institute		Commerce, and Vid. Dadasaheb Pitre Science
		College (Autonomous), Devrukh. Tal.
		Sangameshwar, Dist. Ratnagiri-415804,
Name of the Parent University	:	University of Mumbai
Name of the Programme	:	Master of Science
Name of the Department	:	Chemistry
Name of the Class	:	Second Year
Semester	:	Four
No. of Credits	:	04
Title of the Course	:	Quality in Analytical Chemistry-II
Course Code	:	S610CHT
Name of the Vertical in adherence	:	Compulsory Major
to NEP 2020		
Eligibility for Admission	:	Chemistry Graduate learner seeking Admission to
		Post Graduate Programme in adherence to Rules and
		Regulations of the University of Mumbai and
		Government of Maharashtra
Passing Marks	:	40%
Mode of Assessment	:	Formative
Level	:	PG
Pattern of Marks Distribution for	:	60:40
SEE and CIA		
Status	:	NEP-CBCS
To be implemented from Academic	:	2024-2025
Year		
Ordinances /Regulations (if any)		

Academic Council Item No:

Syllabus for Second Year of Master of Science in Chemistry (With effect from the academic year 2024-2025)

SEMESTER-IV

Course Title: Quality in Analytical Chemistry-II

Type of Vertical: Compulsory Major

Paper No.- I No. of Credits - 04 **Course Code: S610CHT**

Learning Outcomes Based on BLOOM's Taxonomy:

After completing the course, the learner will be able to				
Course Learning Outcome No.	Blooms Taxonomy	Course Learning Outcome		
CLO-01	Remember	Define terms involved in herbal products, green chemistry and advance techniques.		
CLO-02	Understand	Describe principle, instrumentation and application involved in separation science, green chemistry and advance techniques.		
CLO-03	Apply	Illustrate extraction and standardization of herbal products.		
CLO-04	Analyze	Explain advantages and disadvantages of methods involved in green chemistry and advance techniques.		

Syllabus for Second Year of Master of Science in Chemistry

(With effect from the academic year 2024-2025)

SEMESTER-IV

Paper No.- I No. of Credits - 04

Course Code: S610CHT

Course Title: Quality in Analytical Chemistry-II

Type of Vertical: Compulsory Major

COURSE CONTENT				
Module No.	Content		No. of Hours	
1	 Unit 1: Separation Science Membrane separation processes: operating principles and applications of microfiltration, ultra-filtration, reverse osmosis, dialysis and electro-dialysis. Applications of Solvent extraction in Analytical Chemistry recapitulation of solvent extraction, roles of solvent extraction in analytical chemistry, solvent extraction in sample preparation and pretreatment steps, solvent extraction as a means of analytical determination 	01	15	
2	 Unit 2: Separation, Analysis and Standardization of Herbal based products. Herbs as a raw material: Defination of herb, herbal medicine, herbal Medicinal products, herbal drug preparation. Sources of herbs , Selection, identification and authentication of herbal materials, drying and processing of herbal raw materials. Extraction of herbal materials: Choice of solvent for extraction, methods used for extraction and principles involved in extraction. Standardization of herbal formulation and herbal extracts: Standardization of herbal extract as per WHO cGMP guidelines, Physical, Chemical,Spectral and toxilogical standardization,qualitative and quantitative esimations. 	01	15	
3	 Unit 3: Green Chemistry Principle and concepts of green chemistry: sustainable development and green chemistry, atom 	01	15	

	Total	4	60
	nanomaterials (nanoparticles and quantum dots).		
	(nanotubes, nanowires), three dimensional		
	nanolayers), two dimensional nanomaterials		
	dimensional nano materials (nanofilms,		
	electronic structure, optical properties) one		
	the nanoscale, (nanoparticles morphology,		
	techniques in nanotechnology, consequences of		
	Introduction to Nanotechnology: Analytical		
	instrumentation, detection and applications		
	kinetic capillary chromatography,	01	15
	focusing, isotaechophoresis and miceller electro		
	capillary electrophoresis, zone, gel, isoelectric		
	voltage, sds-page, continuous electrophoresis,		
	• Techniques of Electrophoresis: low and high		
	agarose, sephedax and thin layers)		
	cellulose, acetate, starch, polyacrylamide,		
	migration rate, supporting media (gel, paper,		
-	Unit 4: Advance TechniquesElectrophoresis: introduction, factors affecting		
4			
	monitoring.		
	Designs (ISD). Process intensification (PI) in-process		
	Designing Greener Processes: Inherently Safer		
	electrochemical synthesis.		
	Chemistry using microwayes, sonochemistry and		
	• Emerging Oreen Technologies, photoenennear reactions (advantages and challenges), examples		
	 Emerging Green Technologies: photochemical 		
	introduction) Ionic liquids as catalysts and solvents		
	• Organic solvents, environmentally being i solutions,		
	• Organic solvents: environmentally benign solutions		
	uneconomic reactions, reducing toxicity		
	economy, examples of atom economic and atom		

Access to the Course

The course is available for second year students admitted for Master of Science.

Methods of Assessment

The assessment pattern would be 60:40, 60% for Semester End Examination (SEE) and 40% for Continuous Internal Assessment (CIA). The structure of the SEE and CIA would be as recommended by the Board of Studies and approved by the Board of Examination and the Academic Council of the college.

References:

- 1. Research Methodology: Methods & Techniques by C R Kothari, 2e, Wishwa Publication, New Delhi
- 2. Research Methodology by D K Bhattacharyya, 1 e, Excel Books, New Delhi, 2003
- 3. How to Research by Loraine Blaxter, Christina Hughes and Molcolm Tight, Viva Books Pvt.Ltd., New Delhi
- 4. Chemical methods of separation, J A Dean, Van Nostrand Reinhold, 1969
- 5. Solvent extraction and ion exchange, J Marcus and A. S. Kertes Wiley INC 1969.
- 6. Extraction Chromatography, T. Braun, G. Ghersene, Elsevier Publications 1978.
- 7. Super critical fluid extraction, Larry Taylor Wiley publishers N.Y. 1996
- 8. Ion exchange separation in analytical chemistry, O Samuelson John Wiley 2nd ed 1963
- 9. Ion exchange chromatography, Ed H.F Walton Howden, Hutchenson and Rossing 1976
- 10. Chromatographic and electrophoresis techniques, I Smith Menemann Interscience 1960
- 11. Green chemistry and catalyst, R. A. Sheldon, Isabella Arends, Ulf Hanefeld Wiley VCH verlag GmBH & co.
- 12. Sustainable residential development: planning and design for green neighborhoods. Avi Friedman, McGraw Hill professional.