

SECOND-YEAR OF MASTER OF SCIENCE CHEMISTRY REVISED SYLLABUS ACCORDING TO CBCS NEP2020

COURSE TITLE: ADVANCE INSTRUMENTAL TECHNIQUES-II
SEMESTER-IV
W.E.F. 2024-2025

RECOMMENDED BY THE BOARD OF STUDIES IN CHEMISTRY AND

APPROVED BY THE ACADEMIC COUNCIL

Devrukh Shikshan Prasarak Mandal's
Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and
Vid. Dadasaheb Pitre Science College (Autonomous), Devrukh.
Tal. Sangameshwar, Dist. Ratnagiri-415804, Maharashtra,
India

Academic Council Item No:

Name of the Implementing	:	Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre		
Institute		Commerce, and Vid. Dadasaheb Pitre Science		
		College (Autonomous), Devrukh. Tal.		
		Sangameshwar, Dist. Ratnagiri-415804,		
Name of the Parent University	:	University of Mumbai		
Name of the Programme	:	Master of Science		
Name of the Department	:	Chemistry		
Name of the Class	:	Second Year		
Semester	:	Four		
No. of Credits	:	04		
Title of the Course	:	Advance Instrumental Techniques-II		
Course Code	:	S611CHT		
Name of the Vertical in adherence	:	Compulsory Major		
to NEP 2020				
Eligibility for Admission	:	Chemistry Graduate learner seeking Admission to		
		Post Graduate Programme in adherence to Rules and		
		Regulations of the University of Mumbai and		
		Government of Maharashtra		
Passing Marks	:	40%		
Mode of Assessment	:	Formative		
Level	:	PG		
Pattern of Marks Distribution for	:	60:40		
SEE and CIA				
Status	:	NEP-CBCS		
To be implemented from Academic	:	2024-2025		
Year				
Ordinances /Regulations (if any)				

Syllabus for Second Year of Master of Science in Chemistry (With effect from the academic year 2024-2025)

SEMESTER-IV Paper No.- II

Course Title: Advance Instrumental Techniques - II No. of Credits - 04

Type of Vertical: Compulsory Major Course Code: S611CHT

Learning Outcomes Based on BLOOM's Taxonomy:

After completing the course, the learner will be able to					
Course Learning Outcome No.	Blooms Taxonomy	Course Learning Outcome			
CLO-01	Understand	Explain principle, instrumentation and applications involved in spectral method, radiochemical – thermal and hyphenated technique.			
CLO-02	Understand	Describe working of interface used in hyphenated techniques			
CLO-03	Apply	Illustrate applications of spectral method , radiochemical – thermal and hyphenated technique.			
CLO-04	Analyze	Distinguish between TG-DTA and TG-DSC as well as TG-MS and TG-FTIR.			

Syllabus for Second Year of Master of Science in Chemistry (With effect from the academic year 2024-2025)

SEMESTER-IV Paper No.- II

Course Title: Advance Instrumental Techniques - II No. of Credits - 04

Type of Vertical: Compulsory Major Course Code: S611CHT

	COURSE CONTENT					
Module No.	('ontent		No. of Hours			
1	 Unit 1: Spectral Method - III NMR Spectroscopy : Theory and Instrumentation-recapitulation, FTNMR, 2D NMR,- FID signal generation mechanism, Techniques in 2D NMR- homo nuclear correlation spectroscopy (COSY), total correlation spectroscopy (TOCSY), heteronuclear correlation (HETCOR) Radio waves in imaging- principle instrumentation and applications of MRI Application of NMR to other nuclei C¹³, P³¹ and F¹⁹ spectroscopy 	01	15			
2	 Mass spectroscopy: recapitulation, correlation of mass spectra with molecular structure- interpretation of mass spectra, analytical information derived from mass spectra- molecular identification, metastable peaks, Fragmentation Reactions Raman spectroscopy: Principle Theory Instrumentation , techniques(SERS and Resonance Raman) and Applications of Raman spectroscopy 	01	15			
3	 Unit 3: Radiochemical and Thermal Method Activation analysis- NAA, radiometric titrations and radio-release methods. Thermal analysis- Principle, Interfacing, instrumentation and Applications of Simultaneous Thermal Analysis- TG-DTA and TG-DSC 	01	15			
4	 Unit 4: Hyphenated Techniques concept of hyphenation, need for hyphenation, possible hyphenations. 	01	15			

Total	4	60
MS, CE-MS.		
 Interfacing devices and applications of GC – MS, ICP – MS, GC - IR, Tandem Mass Spectrometry, LC – MS: HPLC- 		

Access to the Course

The course is available for second year students admitted for Master of Science.

Methods of Assessment

The assessment pattern would be 60:40, 60% for Semester End Examination (SEE) and 40% for Continuous Internal Assessment (CIA). The structure of the SEE and CIA would be as recommended by the Board of Studies and approved by the Board of Examination and the Academic Council of the college.

References:

- 1. Analytical Chemistry, G. D. Christian, 4th Ed. John Wiley, New York (1986)
- 2. Fundamentals of Analytical Chemistry, D. A. Skoog and D. M. West and F. J Holler th Holt- Saunders 6 Edition (1998)
- 3. Principles of Instrumental Analysis, D. A. Skoog, F. J. Holler and J.A. Niemann 5 Ed.
- 4. Instrumental methods of Analysis, H. H. Willard, L. L. Merritt Jr, J. A. Dean and F. A.
- 5. Thermal methods of Analysis, P. J. Haines, Blackie Academic & Professional, London (1995)
- 6. Thermal Analysis, 3 Edition W. W. Wendlandt, John Wiley, N.Y. (1986) nd
- 7. Principles and Practices of X-ray spectrometric Analysis, 2 Ed E. P. Bertain, Plenum Press, NY, (1975)
- 8. Nuclear Analytical Chemistry, D. Bane, B. Forkman, B. Persson, Chartwell Bratt Ltd (1984)
- 9. Standard Methods of Chemical Analysis, Eds. F. J. Welcher, Robert E. Krieger Publishing Company, A series of volumes
- 10. A Complete Introduction to Modern NMR Spectroscopy 1st Edition by Roger S. Macomber
- 11. Spectrometric Identification of Organic Compounds Hardcover by Robert M.Silverstein Wiley
- 12. Encyclopedia of Analytical Science, Editors-in-Chief: Paul Worsfold, Alan Townshend, and Colin Poole ISBN: 978-0-12-369397-6
- 13. Introduction to Thermal Analysis Techniques and Applications Edited by Michael E. Brown