

# SECOND-YEAR OF MASTER OF SCIENCE CHEMISTRY REVISED SYLLABUS ACCORDING TO CBCS NEP2020

## COURSE TITLE: SYNTHETIC ORGANIC CHEMISTRY-II SEMESTER-IV W.E.F. 2024-2025

#### RECOMMENDED BY THE BOARD OF STUDIES IN CHEMISTRY AND APPROVED BY THE ACADEMIC COUNCIL

Devrukh Shikshan Prasarak Mandal's

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and Vid. Dadasaheb Pitre Science College (Autonomous), Devrukh. Tal. Sangameshwar, Dist. Ratnagiri-415804, Maharashtra, India

| Name of the Implementing          | : | Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre    |
|-----------------------------------|---|---------------------------------------------------|
| Institute                         |   | Commerce, and Vid. Dadasaheb Pitre Science        |
|                                   |   | College (Autonomous), Devrukh. Tal.               |
|                                   |   | Sangameshwar, Dist. Ratnagiri-415804,             |
| Name of the Parent University     | : | University of Mumbai                              |
| Name of the Programme             | : | Master of Science                                 |
| Name of the Department            | : | Chemistry                                         |
| Name of the Class                 | : | Second Year                                       |
| Semester                          | : | Four                                              |
| No. of Credits                    | : | 04                                                |
| Title of the Course               | : | Synthetic Organic Chemistry-II                    |
| Course Code                       | : | S611CHT                                           |
| Name of the Vertical in adherence | : | Compulsory Major                                  |
| to NEP 2020                       |   |                                                   |
| Eligibility for Admission         | : | Chemistry Graduate learner seeking Admission to   |
|                                   |   | Post Graduate Programme in adherence to Rules and |
|                                   |   | Regulations of the University of Mumbai and       |
|                                   |   | Government of Maharashtra                         |
| Passing Marks                     | : | 40%                                               |
| Mode of Assessment                | : | Formative and Summative                           |
| Level                             | : | PG                                                |
| Pattern of Marks Distribution for | : | 60:40                                             |
| SEE and CIA                       |   |                                                   |
| Status                            | : | NEP-CBCS                                          |
| To be implemented from Academic   | : | 2024-2025                                         |
| Year                              |   |                                                   |
| Ordinances /Regulations (if any)  |   |                                                   |

#### Academic Council Item No:

#### Syllabus for Second Year of Master of Science in Chemistry

(With effect from the academic year 2024-2025)

## SEMESTER-IV

Course Title: Synthetic Organic Chemistry-II Type of Vertical: Compulsory Major Paper No.- II No. of Credits: 04 COURSE CODE: S611CHT

#### Learning Outcomes Based on BLOOM's Taxonomy:

| After completing the course, the learner will be able to |                    |                                                                                                                                                                                    |  |
|----------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Course<br>Learning<br>Outcome No.                        | Blooms<br>Taxonomy | Course Learning Outcome                                                                                                                                                            |  |
| CLO-01                                                   | Remember           | to study protecting groups in organic synthesis, general<br>strategy, cathodic and anodic reduction and basic concept<br>related to transition and rare earth metals.              |  |
| CLO-02                                                   | Understand         | discuss disconnection approach, one and two group C-C<br>disconnections and applications of Ni, Co, Fe, Rh, and Cr<br>carbonyls in organic synthesis                               |  |
| CLO-03                                                   | Apply              | construct the mechanism of michael addition,robinson<br>annelation, heck reaction, suzuki-Miayura coupling,<br>sonogashira reaction.                                               |  |
| CLO-04                                                   | Analyze            | explain chemoselectivity, regioselectivity, stereoselectivity,<br>enantioselectivity and applications of Crown ethers, cryptands,<br>micelles, cyclodextrins in organic synthesis. |  |

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce and Vid. Dadasaheb Pitre Science College, Devrukh (An Autonomous College Affiliated with University of Mumbai)

## Syllabus for Second Year of Master of Science in Chemistry

(With effect from the academic year 2024-2025)

## **SEMESTER-IV**

Course Title: Synthetic Organic Chemistry-II

**Type of Vertical: Compulsory Major** 

| COURSE CONTENT |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                 |  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|--|
| Module<br>No.  | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Credits | No. of<br>Hours |  |
| 1              | UNIT-I: Designing Organic Synthesis-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                 |  |
|                | • <b>Protecting groups in Organic Synthesis:</b> Protection and deprotection of the hydroxyl, carbonyl, amino and carboxyl functional groups and its applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                 |  |
|                | <ul> <li>Concept of umpolung (Reversal of polarity):<br/>Generation of acyl anion equivalent using 1,3-dithianes,<br/>methyl thiomethyl sulfoxides, cyanide ions,<br/>cyanohydrin ethers, nitro compounds and vinylated<br/>ethers.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                               |         |                 |  |
|                | <ul> <li>Introduction to Retrosynthetic analysis and<br/>synthetic planning: Linear and convergent synthesis;<br/>Disconnection approach: An introduction to synthons,<br/>synthetic equivalents, disconnection approach,<br/>functional group interconversions (FGI), functional<br/>group addition (FGA), functional group removal (FGR)<br/>importance of order of events in organic synthesis, one<br/>and two group C-X disconnections (1,1; 1,2; 1,3<br/>difunctionalized compounds), selective organic<br/>transformations: chemoselectivity, regioselectivity,<br/>stereoselectivity, enantioselectivity.</li> </ul> | 01      | 15              |  |

Paper No. - II

No. of Credits: 04

**COURSE CODE: S611CHT** 

| 2 | UNIT-II: Designing Organic Synthesis-II                        |    |    |
|---|----------------------------------------------------------------|----|----|
|   | • General strategy: choosing a disconnection-                  |    |    |
|   | simplification, symmetry, high yielding steps, and             |    |    |
|   | recognisable starting material.                                |    |    |
|   | • One group C-C Disconnections: Alcohols (including            |    |    |
|   | stereoslectivity), carbonyls (including regioselectivity),     | 01 | 15 |
|   | Alkene synthesis, use of acetylenes and aliphatic nitro        | 01 | 15 |
|   | compounds in organic synthesis.                                |    |    |
|   | • <b>Two group C-C Disconnections:</b> 1,2-1,3-1,4-1,5- and    |    |    |
|   | 1,6- difunctionalized compounds, Diels-Alder reactions,        |    |    |
|   | $\alpha$ , $\beta$ -unsaturated compounds, control in carbonyl |    |    |
|   | condensations, Michael addition and Robinson                   |    |    |
|   | annelation.                                                    |    |    |

| 3 | UNIT-III : Electro-organic chemistry and Selected         |    |    |
|---|-----------------------------------------------------------|----|----|
|   | methods of Organic synthesis                              |    |    |
|   | Electro-organic chemistry:                                |    |    |
|   | • Introduction: Electrode potential, cell parameters,     |    |    |
|   | electrolyte, working electrode, choice of solvents,       |    |    |
|   | supporting electrolytes.                                  |    |    |
|   | • Cathodic reduction: Reduction of alkyl halides,         |    |    |
|   | aldehydes, ketones, nitro compounds, olefins, arenes,     |    |    |
|   | electro-dimerization.                                     |    |    |
|   | • Anodic oxidation: Oxidation of alkylbezene, Kolbe       |    |    |
|   | reaction, Non-Kolbe oxidation, Shono oxidation.           |    |    |
|   | <ul> <li>Selected Methods of Organic synthesis</li> </ul> | 01 | 15 |
|   | Applications of the following in organic synthesis:       |    |    |
|   | • Crown ethers, cryptands, micelles, cyclodextrins,       |    |    |
|   | catenanes.                                                |    |    |
|   | • Organocatalysts: Proline, Imidazolidinone.              |    |    |
|   | • Pd catalysed cycloaddition reactions: Stille reaction,  |    |    |
|   | Saeguse-Ito oxidation to enones, Negishi coupling.        |    |    |
|   | • Use of Sc(OTf), and Yb(OTf) as water tolerant Lewis     |    |    |
|   | acid catalyst in aldol condensation, Michael reaction,    |    |    |
|   | Diels-Alder reaction, Friedel – Crafts reaction.          |    |    |

| 4 | Unit-IV: Transition and rare earth metals in organic               |    |    |
|---|--------------------------------------------------------------------|----|----|
|   | synthesis                                                          |    |    |
|   | • Introduction to basic concepts: 18 electron rule,                |    |    |
|   | bonding in transition metal complexes, C-H activation,             |    |    |
|   | oxidative addition, reductive elimination, migratory               |    |    |
|   | insertion.                                                         |    |    |
|   | • <b>Palladium in organic synthesis:</b> $\pi$ -bonding of Pd with |    |    |
|   | olefins, applications in C-C bond formation,                       |    |    |
|   | carbonylation, alkene isomerisation, cross-coupling of             |    |    |
|   | organometallics and halides. Representative examples:              |    |    |
|   | Heck reaction, Suzuki-Miayura coupling, Sonogashira                |    |    |
|   | reaction and Wacker oxidation. Heteroatom coupling for             |    |    |
|   | bond formation between aryl/vinyl groups and N, S, or P            |    |    |
|   | atoms.                                                             |    |    |
|   | • <b>Olefin metathesis</b> using Grubb's catalyst.                 | 01 | 15 |
|   | • Application of Ni, Co, Fe, Rh, and Cr carbonyls in               |    |    |
|   | organic synthesis.                                                 |    |    |
|   | • Application of samarium iodide including reduction of            |    |    |
|   | organic halides, aldehydes and ketones, $\alpha$ -functionalised   |    |    |
|   | carbonyl and nitro compounds.                                      |    |    |
|   | • Application of Ce(IV) in synthesis of heterocyclic               |    |    |
|   | quinoxaline derivatives and its role as a de-protecting            |    |    |
|   | agent.                                                             |    |    |
|   | Total                                                              | 04 | 60 |
|   |                                                                    |    |    |

#### Access to the Course

The course is available for all the students admitted for Second year of Master of Science.

### **Methods of Assessment**

The assessment pattern would be 60:40, 60% for Semester End Examination (SEE) and 40% for Continuous Internal Assessment (CIA). The structure of the SEE and CIA would be as recommended by the Board of Studies and approved by the Board of Examination and the Academic Council of the college.

## **References:**

- 1) Advanced Organic Chemistry, Part A and Part B: Reaction and Synthesis, Francis A. Carey, Richard J. Sundberg, 5th Edition, Springer Verlag
- 2) Modern Methods of Organic Synthesis, 4 th Edition, W. Carruthers and Iain Coldham, Cambridge University Press, 2004.
- 3) Chem.Rev. 2002, 102, 2227-2302, Rare Earth Metal Triflates in Organic Synthesis, S. Kobayashi, M. Sugiura, H. Kitagawa, and W.W.L. Lam.
- 4) Organic Chemistry, Clayden Greeves Warren and Wothers, Oxford Press (2001).
- 5) Moder Organic Synthesis: An Introduction, G.S. Zweifel and M.H. Nantz, W.H. Freeman and Company, (2007).
- 6) Advanced Organic Chemistry: Reaction Mechanism, R. Bruckner, Academic Press (2002).
- 7) Principles of Organic Synthesis, R.O.C. Norman & J. M. Coxon, 3 rd Edn., Nelson Thornes
- 8) Organic Chemistry, 7 th Edn, R. T. Morrison, R. N. Boyd, & S. K. Bhattacharjee, Pearson
- 9) Strategic Applications of Name Reactions in Organic Synthesis, L. Kurti & B. Czako (2005), Elsevier Academic Press
- 10) Advanced Organic Chemistry: Reactions & Mechanisms, 2 nd Edn., B. Miller & R. Prasad, Pearson
- 11) Organic reactions and their mechanisms, 3 rd revisededition, P.S. Kalsi, New Age International Publishers
- 12) Organic Synthesis: The Disconnection Approach, Stuart Warren, John Wiley & Sons, 2004
- 13) Name Reactions and Reagents in Organic Synthesis, 2 nd Edn., Bradford P. Mundy, Michael G. Ellard, and Frank Favoloro, Jr., Wiley-Interscience
- 14) Name Reactions, Jie Jack Lie, 3rd Edn., Springer
- 15) Organic Electrochemistry, H. Lund, and M. Baizer, 3rd Edn., Marcel Dekker.