

SECOND-YEAR OF MASTER OF SCIENCE CHEMISTRY REVISED SYLLABUS ACCORDING TO CBCS NEP2020

COURSE TITLE: TWO STEP PREPARATIONS AND
COMBINED SPECTRAL ANALYSIS
SEMESTER-IV,
W.E.F. 2024-2025

RECOMMENDED BY THE BOARD OF STUDIES IN CHEMISTRY AND

APPROVED BY THE ACADEMIC COUNCIL

Devrukh Shikshan Prasarak Mandal's
Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and
Vid. Dadasaheb Pitre Science College (Autonomous), Devrukh.
Tal. Sangameshwar, Dist. Ratnagiri-415804, Maharashtra,
India

Academic Council Item No: _____

Name of the Implementing	:	Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre
Institute		Commerce, and Vid. Dadasaheb Pitre Science
		College (Autonomous), Devrukh. Tal.
		Sangameshwar, Dist. Ratnagiri-415804,
Name of the Parent University	:	University of Mumbai
Name of the Programme	:	Master of Science
Name of the Department	:	Chemistry
Name of the Class	:	Second Year
Semester	:	Four
No. of Credits	:	02
Title of the Course	:	Two Step Preparations and Combined Spectral
		Analysis
Course Code	:	S613CHP
Name of the Vertical in adherence	:	Compulsory major
to NEP 2020		
Eligibility for Admission	:	Chemistry Graduate learner seeking Admission to
		Post Graduate Programme in adherence to Rules and
		Regulations of the University of Mumbai and
		Government of Maharashtra.
Passing Marks	:	40%
Mode of Assessment	:	Summative at the end of semester
Level	:	PG
Pattern of Marks Distribution for	:	100%
TE and CIA		
Status	:	NEP-CBCS
To be implemented from Academic	:	2024-2025
Year		
Ordinances /Regulations (if any)		

Syllabus for Second Year of Master of Science in Chemistry

(With effect from the academic year 2024-2025)

SEMESTER-IV Paper No.– IV

Course Title: Two Step Preparations and No. of Credits - 02

Combined Spectral Analysis

Type of Vertical: Compulsory major COURSE CODE: S613CHP

Learning Outcomes Based on BLOOM's Taxonomy:

After completing the course, the learner will be able to				
Course Learning Outcome No.	Blooms Taxonomy	Course Learning Outcome		
CLO-01	Apply	Write plane of preparation and reaction parameters of organic reactions.		
CLO-02	Analyse	Report mass and melting points.		
CLO-03	Evaluate	Estimate the purity of organic compounds by TLC and spectral data of organic compounds (UV, IR, PMR, CMR and Mass spectra).		
CLO-04	Create	Perform purification procedures for synthesized compounds.		

Syllabus for Second Year of Master of Science in Chemistry

(With effect from the academic year 2024-2025)

SEMESTER-IV Paper No.– IV

Course Title: Two Step Preparations and No. of Credits - 02

Combined Spectral Analysis

Type of Vertical: Compulsory major COURSE CODE: S613CHP

	COURSE CONTENT				
Module No.	Content			No. of Lectures	
1	Practicals:				
	Two s	teps preparations			
	0	Acetophenone \rightarrow Acetophenone phenyl hydrazine \rightarrow			
		2-phenyl indole.			
	0	2-naphthol → 1-phenyl azo-2-naphthol → 1-amino-2-			
		naphthol.			
	0	Cyclohexanone → cyclohexanone oxime →			
		Caprolactum.	02	30	
	0	Hydroquinone \rightarrow hydroquinone diacetate \rightarrow 2,5-	02	30	
	0	dihydroxyacetophenone.			
	0	4-nitrotoluene → 4-nitrobenzoic acid → 4-			
		aminobenzoic acid.			
	0	o-nitroaniline \rightarrow o-phenylene diamine \rightarrow			
		Benzimidazole.			
	0	Benzophenone \rightarrow benzophenone oxime \rightarrow			
		benzanilide.			
	0	o-chlorobenzoic acid \rightarrow N-phenyl anthranilic acid \rightarrow			
		acridone.			
	0	Benzoin \rightarrow benzil \rightarrow benzilic acid.			
	0	Phthalic acid \rightarrow phthalimide \rightarrow anthranilic acid.			
	0	Resorcinol \rightarrow 4-methyl-7-hydroxy coumarin \rightarrow 4-			
		methyl-7-acetoxy coumarin.			

	\circ Anthracene \rightarrow anthraquinone \rightarrow anthrone.		
Le	arning points		
	1) Students are expected to know (i) the planning of		
	synthesis, effect of reaction parameters including		
	stoichiometry, and safety aspects including MSDS		
	(ii) the possible mechanism, expected spectral data (IR		
	and NMR) of the starting material and final product.		
	2) Students are expected to purify the product by		
	recrystallization, measure its mass or volume, check		
	the purity by TLC, determine physical constant		
	and calculate percentage yield.		
2 Co	ombined spectral identification: Interpretation of		
spe	ectral data of organic compounds (UV, IR, PMR, CMR		
an	d Mass spectra).		
A	student will be given UV, IR, PMR, CMR, and Mass	2	30
spe	ectra of a compound from which preliminary information		
sho	should be reported within first half an hour of the examination without referring to any book/reference material. The		
wi			
con	mplete structure of the compound may then be elucidated		
by	referring to any standard text-book/reference material etc.		
	Total	4	60

Access to the Course

The course is available for all the students who have admitted for second year of master of science.

Method of Assessment:

Vocational Skill Courses, Skill Enhancement Courses and the courses having laboratory session shall be assessed at the end of each semester.

Reference

- 1. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis- V.K. Ahluwalia and Renu Aggarwal, Universities Press India Ltd., 2000
- 2. Advanced Practical Organic Chemistry N. K. Vishnoi, Third Addition, Vikas Publishing House PVT Ltd
- 3. Systematic Laboratory Experiments in Organic Synthesis- A. Sethi, New Age International Publications
- 4. Systematic Identification of Organic compounds, 6th edition, R. L.Shriner, R. C. Fuson and D.Y. Curtin Wiley, New York.
- 5. Vogel's Textbook of Quantitative Analysis, revised, J. Bassett, R. C.Denney, G. H. Jeffery and J. Mendham, ELBS
- 6. Experiments and Techniques in Organic Chemistry, D. Pasto, C. Johnson and M. Miller, Prentice Hall.
- 7. Macro-scale and Micro-scale Organic Experiments, K. L. Williamson, D.C. Heath.
- 8. Systematic Qualitative Organic Analysis, H. Middleton, Adward Arnold.
- 9. Handbook of Organic Analysis- Qualitative and Quantitative, H. Clark, Adward Arnold.
- 10. Vogel's Textbook of Practical Organic Chemistry, Fifth edition, 2008, B.S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchell, Pearson Education.
- 11. Laboratory Manual of Organic Chemistry, Fifth edition, R K Bansal, New Age Publishers.
- 12. Organic structures from spectra, L. D. Field, S. Sternhell, John R.Kalman, Wiley, 4th ed. 2011.