

Devrukh Shikshan Prasarak Mandal's Nya. Tatyasaheb Athalye Arts, Ved. S.R. Sapre Commerce and Vid. Dadasaheb Pitre Science College (Autonomous)

Late Kakasaheb Pandit Educational Campus,
Devrukh, Dist: Ratnagiri- 415 804, Maharashtra

NAAC Accredited 'A' Grade (Third Cycle), Mumbai University Best College Award 2009-10

Syllabus

Programme: T. Y. B. Sc.

Course- Analytical Chemistry

w.e.f. Academic Year 2021-22

Choice Based Credit System T. Y. B. Sc.

Chemistry Syllabus To be implemented from the Academic year 2021-22

Course Content Semester V

Course Code	Unit	Topics	Credits	L/Week
USCHT51	I	Molecular Spectroscopy		
	II	Electrochemistry		
	III	Nuclear Chemistry		
	IV	Surface Chemistry & Colloidal State		
USCHT52	I	Molecular Symmetry and Chemical Bonding		
	II	Solid State Chemistry		
	III	Chemistry of Inner Transition Elements		
	IV	Some Selected Topics		
USCHT53	I	Mechanism of Organic Reactions; Pericyclic Reactions &		
		Photochemistry		
	II	Stereochemistry & Heterocyclic Chemistry		
	III	IUPAC & Synthesis of Organic Compounds		
	IV	Spectroscopy-I & Natural Products		
USCHT54	I	Statistical Treatment of Analytical Data-II		
	II	Classical Methods of Analysis (Titrimetry)		
	III	Optical Methods		
	IV	Methods of Separation–I		
USCHP51		Chemistry Practicals I		
USCHP52		Chemistry Practicals II		
USCHP53		Chemistry Practicals III		
USCHP54		Chemistry Practicals IV		

Semester VI

Course Code	Unit	Topics	Credits	L/Week
USCHT61	I	Chemical Thermodynamics & Chemical Kinetics		
	II	Polymers & Renewable Sources		
	III	Quantum Chemistry & Applied Electrochemistry		
	IV	NMR & ESR Spectroscopy		
USCHT62	I	Coordination Chemistry		
	II	Properties of Coordination Compounds		
	III	Organometallic Chemistry		
	IV	Some Selected Topics		
USCHT63	I	Stereochemistry & Biomolecules		
	II	Molecular Rearrangements & Carbohydrates		
	III	Spectroscopy-II		
	IV	Polymers; Catalysts & Reagents		
USCHT64	I	Electro Analytical Techniques		
	II	Methods of Separation-II & Introduction to Quality		
	III	Food and Cosmetics Analysis		
	IV	Thermal Methods and Analytical Method Validation		
USCHP61		Chemistry Practicals I		
USCHP62		Chemistry Practicals II		
USCHP63		Chemistry Practicals III		
USCHP64		Chemistry Practicals IV		

T.Y.B.Sc. Syllabus Chemistry Paper-IV Analytical Chemistry

Semester V

UNIT I: STATISTICAL TREATMENT OF ANALYTICAL DATA-II (15L)

Analytical calculations

- 1.1. Nature of Indeterminate Errors (5L)
- 1.1.1. The true and acceptable value of a result of analysis
- 1.1.2. Measures of central tendency: mean, median, mode, average
- 1.1.3. Measures of dispersion: Absolute deviation, relative deviation, relative average deviation, standard deviation, (s, sigma) variance, coefficient of variation
- 1.2. Distribution of random errors (2L)
- 1.2.1. Gaussian distribution curve.
- 1.2.2. Equation and salient features of Gaussian distribution curve
- 1.3. Concept of Confidence limits and confidence interval & its computation using (4L)
- (i) Population standard deviation; (ii) Student's t test; (iii) Range (Chemical calculations)
- 1.4. Criteria for rejection of doubtful result (2L)
- (i) 2.5 d rule (ii) 4.0 d rule (iii) Q test
- 1.5. Test of Significance (2L)
- (i) Null hypothesis
- (ii) F-test (variance ratio test)

UNIT II: CLASSICAL METHODS OF ANALYSIS (TITRIMETRY) (15L)

- 2.1. Redox Titrations (Numerical & word Problems are expected) (8L)
- 2.1.1. Introduction
- 2.1.2. Construction of the titration curves and calculation of E_{system} in aqueous medium in case of:
- (1) One electron system (2) Multielectron system
- 2.1.3. Theory of redox indicators, Criteria for selection of an indicator. Use of diphenyl amine and ferroin as redox indicators

2.2. Complexometric Titrations (7L)

- 2.2.1. Introduction, construction of titration curve
- 2.2.2. Use of EDTA as titrant and its standardization
- 2.2.3. Selectivity of EDTA as a titrant. Factors enhancing selectivity with examples. Advantages and limitations of EDTA as a titrant.
- 2.2.4. Types of EDTA titrations.
- 2.2.5. Metallochromic indicators, theory, examples and applications

UNIT III: OPTICAL METHODS (15L)

3.1. Atomic Spectroscopy: Flame Emission spectroscopy (FES) and Atomic Absorption Spectroscopy (AAS) (7L)

- 3.1.1. Introduction, Energy level diagrams, Atomic spectra, Absorption and Emission Spectra
- 3.1.2. Flame Photometry– Principle, Instrumentation (Flame atomizers, types of Burners, Wavelength selectors, Detectors)
- 3.1.3. Atomic Absorption Spectroscopy—Principle, Instrumentation (Source, Chopper, Flame and Electrothermal Atomizer)
- 3.1.4. Quantification methods of FES and AAS- Calibration curve method, Standard addition method and internal standard method.
- 3.1.5. Comparison between FES and AAS
- 3.1.6. Applications, Advantages and Limitations

3.2. Molecular Fluorescence and Phosphorescence Spectroscopy (4L)

- 3.2.1. Introduction and Principle
- 3.2.2. Relationship of Fluorescence intensity with concentration
- 3.2.3. Factors affecting Fluorescence and Phosphorescence
- 3.2.4. Instrumentation and applications
- 3.2.5. Comparison of Fluorimetry and Phosphorimetry
- 3.2.6. Comparison with Absorption methods

3.3. Turbidimetry and Nephelometry (4L)

- 3.3.1. Introduction and Principle
- 3.3.2. Factors affecting scattering of Radiation: Concentration, particle size, wavelength, refractive index
- 3.3.3. Instrumentation and Applications

UNIT IV: METHODS OF SEPARATION-I (15L)

4.1. Gas Chromatography (8L)

- 4.1.1. Introduction, Principle, Theory and terms involved
- 4.1.2. Instrumentation: Block diagram and components, types of columns, stationary phases in GSC and GLC, Detectors: TCD, FID, ECD
- 4.1.3. Qualitative, Quantitative analysis and applications
- 4.1.4. Comparison between GSC and GLC

4.2. High Performance Liquid chromatography (HPLC) (7L)

- 4.2.1. Introduction and Principle, Instrumentation- components with their significance: Solvent Reservoir, Degassing system, Pumps- (reciprocating pumps, screw driven- syringe type pumps, pneumatic pumps, advantages and disadvantages of each pump), Precolumn, Sample injection system, HPLC Columns, Detectors (UV–Visible detector, Refractive index detector)
- 4.2.2. Qualitative and Quantitative Applications of HPLC

Reference Books:

Analytical Chemistry

- 1. D. Harvey, Modern Analytical Chemistry, The McGraw-Hill Pub. 1st Edition (2000)
- 2. H.S. Ray, R Sridhar and K.P. Abraham, Extraction of Nonferrous Metals, Affiliated East-West Press Pvt. Ltd. New Delhi (1985) reprint 2007.
- 3. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denney, Vogel's Textbook of Quantitative Chemical Analysis, Fifth edition, ELBS Publication (1996)
- 4. D.A. Skoog D.M. West and F.J. Holler, Fundamentals of Analytical Chemistry, 7th Edition (printed in India in 2001) ISBN Publication.
- 5. Analytical Chemistry, J.G. Dick, 1973 Tata McGraw Hill Publishing Co. Ltd. New Delhi.
- 6. Quantitative analysis, Dey& Underwood, Prentice Hall of India, Pvt. Ltd. New Delhi
- 7. Fundamentals of Analytical Chemistry, Skoog 8th edition, Saunders college publishing