

THIRD-YEAR OF BACHELOR OF COMPUTER SCIENCE REVISED SYLLABUS ACCORDING TO CBCS

COURSE TITLE: WIRELESS SENSOR NETWORKS AND MOBILE COMMUNICATION

SEMESTER-V, W.E.F. 2021-2022

Recommended by the Board of Studies in Computer Science And

Approved by the Academic Council

Devrukh Shikshan Prasarak Mandal's

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and Vid. Dadasaheb Pitre Science College (Autonomous), Devrukh.

Tal. Sangameshwar, Dist. Ratnagiri-415804, Maharashtra, India

:	Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre
	Commerce, and Vid. Dadasaheb Pitre Science
	College (Autonomous), Devrukh. Tal.
	Sangameshwar, Dist. Ratnagiri-415804,
:	University of Mumbai
:	Bachelor of Science
:	Computer Science
:	Third Year
:	Six
:	03
:	Wireless Sensor Networks and Mobile Communication
:	USCST61
:	Elective I
:	Any 12 th Pass seeking Admission to Degree
	Programme in adherence to Rules and Regulations
	of the University of Mumbai and Government of
	Maharashtra
:	40%
:	Formative and Summative
:	UG
:	70:30
:	CBCS
:	2021-2022
1	
]	
	: : : : : : : : : : : : : : : : : : : :

Syllabus for Third Year of Bachelor of Science in Computer Science

(With effect from the academic year 2021-2022)

SEMESTER-V Paper No.– 1

Course Title: Wireless Sensor Networks and Mobile Communication No. of Credits - 03

Type of Vertical: Elective I COURSE CODE: USCST61

Learning Outcomes Based on BLOOM's Taxonomy:

After completing the course, the learner will be able to			
Course Learning Outcome No.	Blooms Taxonomy	Course Learning Outcome	
CO-01	Understand	After completion of this course, learner should be able to list various applications of wireless sensor networks, describe the concepts, protocols, design, implementation and use of wireless sensor networks.	
CO-02	Apply	Also implement and evaluate new ideas for solving wireless sensor network design issues.	

Syllabus for Third Year of Bachelor of Science in Computer Science (With effect from the academic year 2021-2022)

SEMESTER-V Paper No.– 1

Course Title: Wireless Sensor Networks and Mobile Communication No. of Credits - 03

Type of Vertical: Elective I COURSE CODE: USCST61

	COURSE CONTENT		
Unit No.	Content		No. of Lectures
	Introduction: Introduction to Sensor Networks, unique		
	constraints and challenges.		
	Advantage of Sensor Networks, Applications of Sensor		
	Networks,		
	Mobile Adhoc NETworks (MANETs) and Wireless Sensor		
	Networks,	01	15
	Enabling technologies for Wireless Sensor Networks.		
	Sensor Node Hardware and Network Architecture:		
I	Singlenode architecture, Hardware components & design		
	constraints,		
	Operating systems and execution environments, introduction		
	to		
	TinyOS and nesC. Network architecture, Optimization goals		
	and		
	figures of merit, Design principles for WSNs, Service		
	interfaces		
	of WSNs, Gateway concepts.		
	Medium Access Control Protocols: Fundamentals of MAC		
	Protocols, MAC Protocols for WSNs, Sensor-MAC Case		
II	Study.		
	Routing Protocols : Data Dissemination and Gathering,	01	15
	Routing Challenges and Design Issues in Wireless		

	Sensor Networks, Routing Strategies in Wireless Sensor		
	Networks.		
	Transport Control Protocols: Traditional Transport Control		
	Protocols, Transport Protocol Design Issues, Examples of		
	Existing Transport Control Protocols, Performance of		
	Transport		
	Control Protocols.		
	Introduction, Wireless Transmission and Medium Access		
	Control: Applications, A short history of wireless		
	communication.		
	Wireless Transmission: Frequency for radio transmission, Signals, Antennas, Signal propagation, Multiplexing,		
	Modulation, Spread spectrum, Cellular systems.		
III	Telecommunication, Satellite and Broadcast Systems: GSM:	01	15
	Mobile services, System architecture, Radio interface, Protocols,		
	Localization And Calling, Handover, security, New data		
	services; DECT: System architecture, Protocol architecture;		
	ETRA, UMTS and IMT- 2000.		
	Satellite Systems: History, Applications, Basics: GEO, LEO,		
	MEO;Routing, Localization, Handover.		

Total	02	15
Total	03	43

Required Previous Knowledge

Students should know basic concepts related to computer and computer handling

Access to the Course

The course is available for all the students admitted for Bachelor of Science (Computer Science).

Forms of Assessment

The assessment of the course will be of Diagnostic, Formative and Summative type. At the beginning of the course diagnostic assessment will be carried out. The formative assessment will be used for the Continuous Internal Evaluation whereas the summative assessment will be conducted at the end of the term. The weightage for formative and summative assessment will be 60:40. The detailed pattern is as given below.

Semester End Evaluation (70 Marks) Question Paper Pattern

Time: 2:30 hours

Question	Unit/s	Question Pattern	Marks
No.			
Q.1	I ,II &III	MCQ/Fill in the blanks/One line sentence	10
Q.2	I	Descriptive Questions	20
Q.3	II	Descriptive Questions	20
Q4.	III	Descriptive Questions	20
		Total	70

Internal evaluation (30 Marks)

Sr. No.	Description	Marks
1	Classroom Tests	10
2	Project/ Viva/ Presentations/ Assignments	10
3	Attendance	10
	Total	30

Grading Scale

10 points grading scale will be used. The grading scale used is O to F. Grade O is the highest passing grade on the grading scale, and grade F is a fail. The Board of Examinations of the college reserves the right to change the grading scale.

Reference book:

- Protocols and Architectures for Wireless Sensor Network, Holger Kerl, Andreas Willig, John Wiley and Sons, 2005
- Wireless Sensor Networks Technology, Protocols, and Applications ,Kazem Sohraby, Daniel Minoli and TaiebZnati, John Wiley & Sons, 2007
- Mobile communications, Jochen Schiller,2nd Edition, Addison wisely , Pearson Education,2012

Text book:

• Techmax publication book

Additional References:

- Fundamentals of Wireless Sensor Networks, Theory and Practice, Waltenegus Dargie, Christian Poellabauer , Wiley Series on wireless Communication and Mobile Computing, 2011
- Networking Wireless Sensors, Bhaskar Krishnamachari, Cambridge University Press, 2005

Course:	Practical of USCST61 (Credits: 1,
USCSP68	Lectures/Week: 3)
USCSP68	Practical experiments require software tools like INET Framework for OMNeT++, NetSim , TOSSIM, Cisco packet tracer 6.0 and higher version. 1. Understanding the Sensor Node Hardware. (For Eg. Sensors, Nodes(Sensor mote), Base Station, Graphical User Interface.) 2. Exploring and understanding TinyOS computational concepts:- Events, Commands and Task. - nesC model - nesC Components3. Understanding TOSSIM for - Mote-mote radio communication - Mote-PC serial communication 4. Create and simulate a simple adhoc network 5. Understanding, Reading and Analyzing Routing Table of a network. 6. Create a basic MANET implementation simulation for Packet animation and Packet Trace. 7. Implement a Wireless sensor network simulation. 8. Create MAC protocol simulation implementation for wireless sensor Network. 9. Simulate Mobile Adhoc Network with Directional Antenna 10. Create a mobile network using Cell Tower, Central Office Server, Web browser and Web Server. Simulate connection between them.