Academic Council Item

No:_____

Devrukh Shikshan Prasarak Mandal's

Nya. TATYASAHEB ATHALYE ARTS, Ved. S.R. SAPRE COMMERCE & Vid. DADASAHEB PITRE SCIENCE COLLEGE, DEVRUKH [AUTONOMOUS]

Syllabus for T.Y. B.Sc. Program: B.Sc. Course: Physics Credit Based Semester and Grading System with the Effect from Academic Year 2021-22

Syllabus for B.Sc. Physics (Theory and Practical) As per credit based system Third Year B.Sc.2021–2022.

The revised syllabus in Physics as per credit based system for the Third Year B.Sc. Course will be implemented from the academic year <u>2021–2022.</u>

Preamble: The systematic and planned curricula from these courses shall motivate and encourage learners to understandbasic concepts of Physics.

Objectives:

- To develop analytical abilities towards real world problems
- To familiarize with current and recent scientific and technological developments
- To enrich knowledge through problem solving, hands on activities, study visits, projects etc.

SEMESTER VI							
Theory							
Course	UNIT	TOPICS	Credits	Lectures per Week			
USPH601	Ι	Classical Mechanics	2.5	4			
	ΙΙ	Classical Mechanics					
	III	Classical Mechanics					
	IV	Classical Mechanics					
USPH602	Ι	Electronics	2.5				
	Π	Electronics		4			
	III	Electronics					
	IV	Electronics					
USPH603	Ι	Nuclear Physics	2.5	4			
	II	Nuclear Physics					
	III	Nuclear Physics					
	IV	Nuclear Physics					
USPH604	Ι	Special Theory of Relativity	2.5	4			
	II	Special Theory of Relativity					
	III	Special Theory of Relativity					
	IV	Special Theory of Relativity					
Practicals							
USPH605	Practic	icals of Course USPH601 + Course USPH602		2.5 6			
USPH606	Practicals of Course USPH603 + Course USPH604			2.5 6			
Project							
USPHPR2 USPH601 + USPH602 + USPH603 + USPH604				1 4			

SEMESTER VI

Theory Course – USPH604: Special

Theory of RelativityLearning outcomes:

This course introduces students to the essence of special relativity which revolutionized the concept of physics in the last century by unifying space and time, mass and energy, electricity and magnetism. This course also gives a very brief introduction of general relativity. After the completion of the course the student should be able to

- **1.** Understand the significance of Michelson Morley experiment and failure of the existing theories to explain the null result
- 2. Understand the importance of postulates of special relativity, Lorentz transformation equations and how it changed the way we look at space and time, Absolutism and relativity, Common sense versus Einstein concept of Space and time.
- **3.** Understand the transformation equations for: Space and time, velocity, frequency, mass, momentum, force, Energy, Charge and current density, electric and magnetic fields.
- 4. Solve problems based on length contraction, time dilation, velocity addition, Doppler effect, mass energy relation and resolve paradoxes in relativity like twin paradox etc.

|--|

Introduction to Special theory of relativity:

Inertial and Non-inertial frames of reference, Galilean transformations, Newtonian relativity, Electromagnetism and Newtonian relativity. Attempts to locate absolute frame: Michelson- Morley experiment (omit derivation part), Attempts to preserve the concept of a preferred ether frame: Lorentz Fitzgerald contraction and Ether drag hypothesis (conceptual), Stellar aberration, Attempt to modify electrodynamics.

Relativistic Kinematics - I: Postulates of the special theory of relativity, Simultaneity, Derivation of Lorentz transformation equations. Some consequences of the Lorentz transformation equations: length contraction, time dilation and meson experiment, The observer in relativity.

RR: 1.1 to 1.9, 2.1 to 2.5

Unit -	·II		(15 lect.)				
Relat	tivisti	c Kinematics - II: The relativistic addition of velocities,	acceleration				
transformation equations, Aberration and Doppler effect in relativity, The common sense							
of special relativity.							
The Geometric Representation of Space-Time: Space-Time Diagrams, Simultaneity,							
Length contraction and Time dilation, The time order and space separation of events, The							
twin paradox.							
RR: 2.6 to 2.8, Supplementary topics A1, A2, A3, B1, B2, B3.							
Unit -	·III		(15 lect.)				
Relativistic Dynamics: Mechanics and Relativity, The need to redefine momentum,							
Relat	ivistic	e momentum, Alternative views of mass in relativity, The relativisti	c force law				
and t	the dy	ynamics of a single particle, The equivalence of mass and ex	nergy, The				
transf	forma	tion properties of momentum, energy and mass. RR: 3.1 to 3.7					
Unit	τ		(15 loct)				
Umt -	·1 V		(15 lect.)				
Relat	tivity	and Electromagnetism: Introduction, The interdependence of	Electric and				
Magr	netic f	ields, The Transformation for E and B, The field of a uniformly m	oving point				
charg	ge, Foi	ce and fields near a current-carrying wire, Force between moving c	harges, The				
invar	iance	of Maxwell's equations.					
The p	orincip	ble of equivalence and general relativity, Gravitational red shift.					
RR: 4	4.1to 4	1.7. Supplementary topic C1, C2, C3, C4.					
Note: (A good number of problems to be solved from Resnick).							
Refer	rences						
1.	RR:	RR: Introduction to Special Relativity: Robert Resnick (Wiley Student Edition).					
2.	Spec	Special theory of Relativity: A. P. French.					
3.	Very Special Relativity – An illustrated guide: by Sander Bais - Amsterdam						
	University Press.						
4.	Chap	napter 1: Concepts of Modern Physics by Arthur Beiser.					
5.	Chap	hapter 2: Modern Physics by Kenneth Krane.					