

REVISED SYLLABUS ACCORDING TO CBCS NEP2020 SECOND-YEAR OF MASTER OF SCIENCE IN PHYSICS

COURSE TITLE:- EMBEDDED C PROGRAMMING SEMESTER - III W.E.F. 2024 - 2025

RECOMMENDED BY THE BOARD OF STUDIES IN PHYSICS AND

APPROVED BY THE ACADEMIC COUNCIL

Devrukh Shikshan Prasarak Mandal's

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and Vid. Dadasaheb Pitre Science College (Autonomous), Devrukh. Tal.Sangmeshwar, Dist. Ratnagiri-415804, Maharashtra, India

Academic Council Item No: dated 19 April 2024

Name of the Implementing Institute	:	Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre	
		Commerce, and Vid. Dadasaheb Pitre Science	
		College (Autonomous), Devrukh. Tal.	
		Sangmeshwar, Dist. Ratnagiri-415804,	
Name of the Parent University	:	University of Mumbai	
Name of the Programme	:	Master of Science	
Name of the Department	:	Physics	
Name of the Class	:	Second Year	
Semester	:	Third	
No. of Credits	:	04	
Title of the Course	:	Embedded C Programming	
Course Code	:	S602PHT	
Name of the Vertical in adherence to	:	Major	
NEP 2020			
Eligibility for Admission		Any student admitted to Second year of M.Sc,	
		degree programme in adherence to Rules and	
		Regulations of the University of Mumbai and	
		Government of Maharashtra.	
Passing Marks	:	40%	
Mode of Assessment	:	Formative and Summative	
Level	:	PG	
Pattern of Marks Distribution for SEE	:	60:40	
and CIA			
Status	:	NEP-CBCS	
To be implemented from Academic	:	2024 - 2025	
Year			

Syllabus for Second Year of Master of Science in Physics

(With effect from the academic year 2024-2025)

SEMESTER - III Paper No-Physics Paper - II

Course Title: Embedded C Programming No. of Credits - 04

Type of Vertical: Major COURSE CODE: S602PHT

Learning Outcomes Based on BLOOM's Taxonomy:

After completing the course, the learner will be able to					
Course Learning Outcome No.	Blooms Taxonomy	Course Learning Outcome			
CLO-01	Remember	Know the use of GNU toolchain			
CLO-02	Understand	Understand the basic concepts and control structures in C language			
CLO-03	Understand	Understand the advanced concepts like functions, pointers and preprocessor			
CLO-04	Understand	Understand the software development methodologies.			
CLO-05	Understand	Understand the various included data structures and their applications			
CLO-06	Apply	Write C programmes for implementation of the data structures			

Syllabus for Second Year of Master of Science in Physics

(With effect from the academic year 2024-2025)

SEMESTER - III Paper No-Physics Paper - II

Course Title: Embedded C Programming No. of Credits - 04

Type of Vertical: Major COURSE CODE: S602PHT

	COURSE CONTENT		
Module No.	Content	Credits	No. of Lectures
Unit 1	Chapter 1: Introduction to C Programming and GNU Toolchain Overview of C programming language, Introduction to GNU Toolchain, Cross Compilers, GNU Make utility, Setting up the Linux environment and understanding vi editor, Version Control - GIT Chapter 2: Basic concept from C programming Tokens of C: Keywords, Data-Types, Variables, Constants, Operators, Identifiers and Storage Class Specifiers Control Flow Statements: If-else, Switch-case, Loops, Arrays and Multidimensional Arrays, Data Input & Output and String Manipulation	01	15
Unit 2	Functions: Declaration, Definition, Calling, Arguments, Return Values, Recursion: Concepts and Examples Pointers: Introduction, Pointer Arithmetic, Pointers and Arrays, Pointers and Functions, Pointers and Strings, Advanced Topics: Structures, Unions, Enum, Typedef, Bit Field Operators	01	15
Unit 3	Preprocessors in C, Files and I/O operations in C Command Line Arguments, Handling Variable Number of Arguments Software Development Methodologies, Waterfall model, V model, Agile, Sprint	01	15
Unit 4	Data Structures and Advanced Concepts Introduction to Data Structures: Array, Stack, Linked Lists Trees: Queues, Trees, heap Algorithm: searching, sorting, hashing, running average, CRC16/32	01	15
	Total	04	60

Reference Books:

- 1. Data Structures Using C by E. Balgurusamy
- 2. Test Driven Development for Embedded C by James Grenning

Access to the Course

The course is available for all the students admitted for Master of Science in Physics.

Methods of Assessment

The assessment pattern would be 60:40, 60% for Semester End Examination (SEE) and 40% for Continuous Internal Assessment (CIA). The structure of the SEE and CIA would be as recommended by the Board of Studies and approved by the Board of Examination and the Academic Council of the college.

Pattern of Evaluation

The Examination/Evaluation pattern shall be framed by the Board of Examination with its final approval from the Academic Council of the College.