

REVISED SYLLABUS ACCORDING TO CBCS NEP2020 SECOND-YEAR OF MASTER OF SCIENCE IN PHYSICS

COURSE TITLE:- REAL TIME OPERATING SYSTEMS (RTOS)
SEMESTER - IV
W.E.F. 2024 - 2025

RECOMMENDED BY THE BOARD OF STUDIES IN PHYSICS AND

APPROVED BY THE ACADEMIC COUNCIL

Devrukh Shikshan Prasarak Mandal's

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and Vid. Dadasaheb Pitre Science College (Autonomous), Devrukh. Tal.Sangmeshwar, Dist. Ratnagiri-415804, Maharashtra, India

Academic Council Item No: dated 19 April 2024

:	Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre		
	Commerce, and Vid. Dadasaheb Pitre Science		
	College (Autonomous), Devrukh. Tal.		
	Sangmeshwar, Dist. Ratnagiri-415804,		
:	University of Mumbai		
:	Master of Science		
:	Physics		
:	Second Year		
:	Fourth		
:	04		
:	Real Time Operating Systems (RTOS)		
:	S610PHT		
:	Major		
:	Any student admitted to Second year of M.Sc,		
	degree programme in adherence to Rules and		
	Regulations of the University of Mumbai and		
	Government of Maharashtra.		
:	40%		
:	Formative and Summative		
:	PG		
:	60:40		
:	NEP-CBCS		
:	2024 - 2025		
	:		

Syllabus for First Year of Master of Science in Physics

(With effect from the academic year 2024 - 2025)

SEMESTER - IV Paper – Physics Paper - II

Course Title: Real Time Operating Systems (RTOS)

No. of Credits - 04

Type of Vertical: Major COURSE CODE: S610PHT

Learning Outcomes Based on BLOOM's Taxonomy:

After completing the course, the learner will be able to					
Course Learning Outcome No.	Blooms Taxonomy	Course Learning Outcome			
CLO-01	Remember	Appreciate the concept and importance of RTOS			
CLO-02	Understand	Understand the architecture and features of Zephyr RTOS			
CLO-03	Apply	Explain task scheduling in zephyr			
CLO-04	Apply	Explain peripheral handling using device drivers			
CLO-05	Create	Design a real world application			

Syllabus for First Year of Master of Science in Physics

(With effect from the academic year 2024 - 2025)

SEMESTER - IV Paper – Physics Paper - II

Course Title: Real Time Operating Systems (RTOS)

No. of Credits - 04

Type of Vertical: Major COURSE CODE: S610PHT

	COURSE CONTENT						
Module	Content	Credits	Lectures				
01	Chapter-1: Introduction to Real-Time Operating Systems (RTOS) Overview of Real-Time Systems, Characteristics and Requirements of Real-Time Systems, Introduction to RTOS Ref - DOCS	01	07				
	Chapter - 2: Basics of Zephyr RTOS Introduction, Understanding Zephyr architecture and components, Setting up Zephyr development environment Ref - DOCS		08				
02	Chapter 1: Zephyr RTOS Fundamentals Basic Zephyr application development, Zephyr Kernel features and services Ref - DOCS	01	05				
	Chapter 2: Task Scheduling and Management in Zephyr Task scheduling in Zephyr: Cooperative and Preemptive scheduling, Task management APIs in Zephyr, Synchronization and Communication mechanisms in Zephyr, Interrupt handling in Zephyr Ref - DOCS		10				
03	Device Drivers and Peripheral Handling in Zephyr Introduction to Device Drivers in Zephyr, Device model and driver APIs in Zephyr, Interfacing peripherals with Zephyr RTOS, Advanced device handling techniques Ref – DOCS	01	15				
04	Real-World Application Development with Zephyr Building real-world projects using Zephyr, Developing IoT applications with Zephyr, Testing & debugging Zephyr applications, Optimizing Zephyr applications for performance and memory usage Ref – DOCS	01	15				
	Total	04	60				

Main Reference:-

DOCS: https://docs.zephyrproject.org/latest/index.html

Supplimentary references:-

DigiKey: https://www.youtube.com/@digikey

JJL: MicroC/OS-II: The Real-Time Kernel" by Jean J. Labrosse

BA: Hands-On RTOS with Microcontrollers: Building Real-time Embedded Systems Using

FreeRTOS, STM32 MCUs, and SEGGER Debug Tools by Brian Amos

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce and Vid. Dadasaheb Pitre Science College, Devrukh (An Autonomous College Affiliated with University of Mumbai)

Methods of Assessment

The assessment pattern would be 60:40, 60% for Semester End Examination (SEE) and 40% for Continuous Internal Assessment (CIA). The structure of the SEE and CIA would be as recommended by the Board of Studies and approved by the Board of Examination and the Academic Council of the college.

Pattern of Evaluation

The Examination/Evaluation pattern shall be framed by the Board of Examination with its final approval from the Academic Council of the College.