

REVISED SYLLABUS ACCORDING TO CBCS NEP2020 SECOND-YEAR OF MASTER OF SCIENCE IN PHYSICS

COURSE TITLE:- EXPERIMENTAL PHYSICS - I SEMESTER - IV W.E.F. 2024 - 2025

RECOMMENDED BY THE BOARD OF STUDIES IN PHYSICS AND

APPROVED BY THE ACADEMIC COUNCIL

Devrukh Shikshan Prasarak Mandal's

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and Vid. Dadasaheb Pitre Science College (Autonomous), Devrukh. Tal.Sangmeshwar, Dist. Ratnagiri-415804, Maharashtra, India

Academic Council Item No: dated 19 April 2024

Name of the Implementing Institute	:	Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre
		Commerce, and Vid. Dadasaheb Pitre Science
		College (Autonomous), Devrukh. Tal.
		Sangmeshwar, Dist. Ratnagiri-415804,
Name of the Parent University	:	University of Mumbai
Name of the Programme	:	Master of Science
Name of the Department	:	Physics
Name of the Class	:	Second Year
Semester	:	Forth
No. of Credits	:	02
Title of the Course	:	Experimental Physics - I
Course Code	:	S613PHT
Name of the Vertical in adherence to	:	Elective
NEP 2020		
Eligibility for Admission	:	Any student admitted to Second year of M.Sc,
		degree programme in adherence to Rules and
		Regulations of the University of Mumbai and
		Government of Maharashtra.
Passing Marks	:	40%
Mode of Assessment	:	Formative and Summative
Level	:	PG
Pattern of Marks Distribution for SEE	:	60:40
and CIA		
Status	:	NEP-CBCS
To be implemented from Academic	:	2024 - 2025
Year		
	1	

Syllabus for First Year of Master of Science in Physics

(With effect from the academic year 2024 - 2025)

SEMESTER - IV Paper – Physics Paper – V

Course Title: Lab – Experimental Physics – I No. of Credits - 02

Type of Vertical: Elective COURSE CODE: S613PHT

Learning Outcomes Based on BLOOM's Taxonomy:

After completing the course, the learner will be able to					
Course Learning Outcome No.	Blooms Taxonomy	Course Learning Outcome			
CLO-01	Understand	Understand the principles and applications of various vaccum techniques presented			
CLO-02	Understand	Understand various nuclear detectors and their applications			
CLO-03	Understand	Understand principles of working of various accelerators			
CLO-04	Apply	Solve numerical problems related to the topics in the course			

Syllabus for First Year of Master of Science in Physics (With effect from the academic year 2024 - 2025)

SEMESTER - IV

Course Title: Lab – Experimental Physics - I

No. o

Type of Vertical: Elective

Paper No.-Physics Paper – V No. of Credits - 02 COURSE CODE: S613PHT

COURSE CONTENT					
Module No.	Content		No. of Lectures		
1	Vacuum Techniques: Fundamental processes at low pressures, Mean Free Path, Time to form monolayer, Number density, Materials used at low pressures, vapour pressure Impingement rate, Flow of gases, Laminar and turbulent flow, Production of low pressures; High Vacuum Pumps and systems, Ultra High Vacuum Pumps and System, Measurement of pressure, Leak detections	01	15		
2	Nuclear Detectors: Gamma ray spectrometer using NaI scintillation detector, High Purity Germanium detector, Multiwire Proportional counter. Accelerators: Cockcroft Walten Generator, Van de Graff Generator, Sloan and Lawrence type Linear Accelerator, Proton Linear Accelerator, Cyclotron and Synchrotron.	01	15		
	Total	02	30		

Reference Books:-

- 1. Vacuum Technology, A. Roth, North Holland Amsterdam
- 2. Ultra High Vacuum Techniques, D. K. Avasthi, A. Tripathi, A. C. Gupta, Allied Publishers Pvt. Ltd (2002)
- 3. Vacuum Science and Technology, V. V. Rao, T. B. Ghosh, K. L. Chopra, Allied Publishers Pvt. Ltd (2001) 4. Nuclei and Particles, E. Segre, W. A. Benjamin
- 4. Nuclear Radiation Detection- William James Price, McGraw Hill
- 5. Introduction to Nuclear Physics, HA Enge, pp 345-353
- 6. Radiation detection & Measurement-Glenn F. Knoll
- 7. Techniques for Nuclear & Particle Physics Experiment- William Leo

Access to the Course

The course is available for all the students admitted for Master of Science in Physics.

Methods of Assessment

The assessment pattern would be 60:40, 60% for Semester End Examination (SEE) and 40% for Continuous Internal Assessment (CIA). The structure of the SEE and CIA would be as recommended by the Board of Studies and approved by the Board of Examination and the Academic Council of the college.

Pattern of Evaluation

The Examination/Evaluation pattern shall be framed by the Board of Examination with its final approval from the Academic Council of the College.

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce and Vid. Dadasaheb Pitre Science College, Devrukh (An Autonomous College Affiliated with University of Mumbai)