Academic Council

Item No: _____

Devrukh Shikshan Prasarak Mandal's

Nya. TATYASAHEB ATHALYE ARTS, Ved. S.R. SAPRE COMMERCE & Vid. DADASAHEB PITRE SCIENCE COLLEGE, DEVRUKH [AUTONOMOUS]

Syllabus for T.Y. B.Sc. Program: B.Sc. Course: Physics Credit Based Semester and Grading System with the Effect from Academic Year 2021-22

Syllabus for B.Sc. Physics (Theory and Practical) As per credit based system Third Year B.Sc.2021–2022.

The revised syllabus in Physics as per credit based system for the Third Year B.Sc. Course will be implemented from the academic year <u>2021–2022</u>.

Preamble:

The systematic and planned curricula from these courses shall motivate and encourage learners to understand basic concepts of Physics.

Objectives:

- To develop analytical abilities towards real world problems
- To familiarize with current and recent scientific and technological developments
- To enrich knowledge through problem solving, hands on activities, study visits, projects etc.

		SEMESTER V		
		Theory		
Course	UNIT	TOPICS	Credits	Lectures per Week
USPH501	Ι	Mathematical Methods in Physics		
	II	Mathematical Methods in Physics	2.5	4
	III	Thermal and Statistical Physics		
	IV	Thermal and Statistical Physics		
USPH502	Ι	Solid State Physics		
	II	Solid State Physics	2.5	4
	III	Solid State Physics		
	IV	Solid State Physics		
USPH503	Ι	Atomic Physics		
	II	Atomic Physics	2.5	4
	III	Molecular Physics		
	IV	Molecular Physics		
USPH504	Ι	Electrodynamics	2.5	
	II	Electrodynamics	2.5	4
	III	Electrodynamics		
	IV	Electrodynamics		

	Practicals		
USPHP05	Practicals of Course USPH501 + Course USPH502	2.5	6
USPHP06	USPHP06 Practicals of Course USPH503 + Course USPH504		6
Project			
USPHPR1	USPH501 + USPH502 + USPH503 + USPH504	1	4

		SEMESTER VI				
		Theory				
Course	UNIT	TOPICS	Credits	Lect per Wee	tures ek	
USPH601	Ι	Classical Mechanics	2.5		Δ	
	II	Classical Mechanics	2.5		4	
	III	Classical Mechanics				
	IV	Classical Mechanics				
USPH602	Ι	Electronics	2.5			
	II	Electronics			4	
	III	Electronics				
	IV	Electronics				
USPH603	Ι	Nuclear Physics				
	II	Nuclear Physics	2.5		4	
	III	Nuclear Physics				
	IV	Nuclear Physics				
USPH604	Ι	Special Theory of Relativity				
	II	Special Theory of Relativity	2.5		4	
	III	Special Theory of Relativity				
	IV	Special Theory of Relativity				
		Practicals		<u> I </u>		
USPH605	Practic	cals of Course USPH601 + Course USPH602		2.5	6	
USPH606	Practic	als of Course USPH603 + Course USPH604		2.5	6	
		Project	I		<u> </u>	
USPHPR2	USP	H601 + USPH602 + USPH603 + USPH604		1	4	

SEMESTER V

Theory Course - USPH501: Mathematical, Thermal and Statistical Physics

Learning outcomes: From this course, the students are expected to learn some mathematical techniques required to understand the physical phenomena at the undergraduate level and get exposure to important ideas of statistical mechanics.

The students are expected to be able to solve simple problems in probability, understand the concept of independent events and work with standard continuous distributions. The students will have idea of the functions of complex variables; solve nonhomogeneous differential equations and partial differential equations using simple methods. The units on statistical mechanics would introduce the students to the concept of microstates, Boltzmann distribution and statistical origins of entropy. It is also expected that the student will understand the difference between different statistics, classical as well as quantum.

Unit - I	Probability	(15 lect.)
Review of	basic concepts, introduction, sample space, events, independ	lent events,
conditional	probability, probability theorems, methods of counting (de	rivation of
formulae	not expected), random variables, continuous distributions	(omit joint
distributions), binomial distribution, the normal distribution, the Poisson distribution.		
Ref: MB – 15.1-15.9		
Expected to cover solved problems from each section and solve at least the following problems:		

section 2: 1-5, 11-15, section 3: 1, 3, 4, 5, section 4: 1, 3, 5, 13, 21, section
5: 1, 10, 13, section 6: 1 to 9, section 8: 1 and 3, section 9: 2, 3, 4, 9.

Unit -II	Complex functions and differential equations	(15 lect.)

		C	
I. Functio	ns of complex variables: The exponential and trigonometric	functions,	
hyperbolic	functions, logarithms, complex roots and powers, inverse trigone	ometric and	
hyperbolic	functions, some applications.		
Ref.: MB:	2.11 to 2.16		
Expected	to cover all solved problems. In addition, solve the foll	owing	
problems:			
section 2: 1	16 - 2, 3, 8, 9, 10.		
2 6		(
2. Second	-order nonnomogeneous equations with constant coefficien	ts, partial	
differential	equations, some important partial differential equations in physic	cs, method	
of separation	on of variables.		
Ref : CH ::	5.2.4, 5.3.1 to 5.3.4		
Expected	to cover all solved problems. In addition, solve the following		
problems:			
5.17 a to e, 5.23, 5.26, 5.29 to 5.35.			
In:t III	Statistical Thormodynamics	(15 last)	
01111 -1111	Staustical Thermodynamics	(15 lect.)	
Microstate	s and configurations derivation of Boltzmann distribution do	minance of	
Roltzmonn	distribution physical magning of the Boltzmann distribution law	definition	
Boltzmann distribution, physical meaning of the Boltzmann distribution law, definition			
of , the canonical ensemble, relating Q to q for an ideal gas, translational partition			
function, e	quipartition theorem, energy, entropy		
ED 10.1			
ER: 13.11	ER: 13.1 to 13.5, 14.1, 14.2, 14.4, 14.8, 15.1, 15.4		
T T •4 T T7			
Unit -IV	Classical and Quantum Statistics	(15 lect.)	
The probab	nility of a distribution. The most probable distribution. Maxwell, F	Roltzmann	
statistics. Molecular aneodo			
statistics, N	noiecular speeds.		
Bose Einst	ain statistics. Black body radiation. The Daylaigh Jaans formula		
Dose-Emistem stausucs, Diack-body radiation, The Kayleign-Jeans formula,			

The

Planck radiation formula, Fermi-Dirac statistics, Comparison of results.

AB : 15.2 to 15.5, 16.1 to 16.6

References:

1.	MB: Mathematical Methods in the Physical sciences: Mary L. Boas Wiley India,
	3rd ed.
2	FR: Thermodynamics, Statistical Thermodynamics and Kinetics: T. Engel and P.
2.	Reid (Pearson)
3.	AB: Perspectives of Modern Physics: Arthur Beiser, (Mc Graw Hill International).
4.	CH: Introduction to Mathematical Methods: Charlie Harper (PHI
	Learning).
Addi	tional References:
1	Mathematical Physica: A K Chatak, Chua 1005 Macmillion India Ltd
1.	Mathematical Filysics. A K Onatak, Chua – 1995 Machiman mula Liu.
2.	Mathematical Method of Physics: Riley, Hobson and Bence, Cambridge
	(Indian edition).
3	Mathematical Physics: H K Das, S. Chand & Co.
5.	Mathematical I hysics. II. R. Das, S. Chand & Co.
4.	Mathematical Methods of Physics: Jon Mathews & R. L. Walker, W A Benjamin
	inc.
5	A Tractice on heat: Sale and Srivestave (Indian proce Allahahad)
5.	A Treatise on heat. Sana and Srivastava (Indian press, Alianadad)
6.	Statistical Physics: F. Reif (Berkeley Physics Course, McGraw Hill)
7	Latra ductory Statistical Machanica, D. Dowlay, and M. Sancher (Oxford Science
/.	Introductory Statistical Mechanics: R. Bowley and M. Sanchez (Oxford Science
	Fublications).
8.	An Introduction to Thermal Physics: D. V. Schroeder (Pearson).
9.	PROBABILITY: Schaum's Outlines Series by S. Lipschutz and M. L.
	Lipson (Nic Graw Hill International).