

FIRST-YEAR OF MASTER OF SCIENCE PHYSICS REVISED SYLLABUS ACCORDING TO CBCS NEP2020

COURSE TITLE:-Solid State Devices SEMESTER-II W.E.F. 2023-2024

RECOMMENDED BY THE BOARD OF STUDIES IN PHYSICS AND APPROVED BY THE ACADEMIC COUNCIL

Devrukh Shikshan Prasarak Mandal's

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and Vid. Dadasaheb Pitre Science College (Autonomous), Devrukh. Tal.Sangmeshwar, Dist. Ratnagiri-415804, Maharashtra, India

Academic Council Item No: 03 dated 8 July 2023

Name of the Implementing	:	Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre	
Institute		Commerce, and Vid. Dadasaheb Pitre Science	
		College (Autonomous), Devrukh. Tal.	
		Sangmeshwar, Dist. Ratnagiri-415804,	
Name of the Parent University	:	University of Mumbai	
Name of the Programme	:	Master of Science	
Name of the Department	:	Physics	
Name of the Class	:	First Year	
Semester	:	Second	
No. of Credits	:	02	
Title of the Course	:	Solid State Devices	
Course Code	:	S514PHT	
Name of the Vertical in adherence	:	Elective	
to NEP 2020			
Eligibility for Admission	:	BSc in Physics	
Passing Marks	:	40%	
Mode of Assessment	:	Formative and Summative	
Level	:	PG	
Pattern of Marks Distribution for	:	60:40	
TE and CIA			
Status	:	NEP-CBCS	
To be implemented from Academic	:	2023-2024	
Year			
Ordinances /Regulations (if any)			

Syllabus for First Year of Master of Science in Physics

(With effect from the academic year 2023-2024)

SEMESTER - II

Course Title: Solid State Devices No. of Credits - 02

Type of Vertical: Elective COURSE CODE: S514PHT

Learning Outcomes Based on BLOOM's Taxonomy:

After completing the course, the learner will be able to					
Course Learning Outcome No.	Blooms Taxonomy	Course Learning Outcome			
CLO-01	Remember	Recall the basics of semiconductors and devices			
CLO-02	Understand	Understand the classification of semiconductors and carrier transport phenomenon			
CLO-03	Analyze	Explain the fabrication of various semiconductor devices			
CLO-04	Understand	Understand the working of devices like MESFET, MODFET etc			

Syllabus for First Year of Master of Science in Physics

(With effect from the academic year 2023-2024)

SEMESTER - II Paper No-Physics-V

Course Title: Solid State Devices No. of Credits - 02

Type of Vertical: Elective COURSE CODE: S514PHT

	COURSE CONTENT						
Module No.	Content	Credits	No. of Lectures				
1	Semiconductor Physics: Classification of Semiconductors; Crystal structure with examples of Si, Ge & GaAs semiconductors; Energy band structure of Si, Ge & GaAs; Extrinsic and compensated Semiconductors; Temperature dependence of Fermi-energy and carrier concentration. Drift, diffusion and injection of carriers; Carrier generation and recombination processes-Direct recombination, Indirect recombination, Surface recombination, Auger recombination; Applications of continuity equation-Steady state injection from one side, Minority carriers at surface, Haynes Shockley experiment, High field effects. Hall Effect; Four – point probe resistivity measurement; Carrier life time measurement by light pulse technique.	01	15				
2	Semiconductor Devices I: p-n junction: Fabrication of p-n junction by diffusion and ion-implantation; Abrupt and linearly graded junctions; Thermal equilibrium conditions; Depletion regions; Depletion capacitance, Capacitance – voltage (C-V) characteristics, Evaluation of impurity distribution, Varactor; Ideal and Practical Current-voltage (I-V) characteristics; Tunneling and avalanche reverse junction break down mechanisms; Minority carrier storage, diffusion capacitance, transient behavior; Ideality factor and carrier concentration measurements; Carrier life time measurement by reverse recovery of junction diode;; p-i-n diode; Tunnel diode, Introduction to p-n junction solar cell and semiconductor laser diode.	01	15				
	Total	02	30				

Main References:

- 1. S.M. Sze; Semiconductor Devices: Physics and Technology, 2nd edition, John Wiley, New York, 2002.
- 2. B.G. Streetman and S. Benerjee; Solid State Electronic Devices, 5th edition, Prentice Hall of India, NJ, 2000.
- 3. W.R. Runyan; Semiconductor Measurements and Instrumentation, McGraw Hill, Tokyo, 1975.
- 4. Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall, Englewood Cliffs, N.J., 1984.
- 5. Jasprit Singh; Semiconductor Devices: Basic Principles, John Wiley, New York, 2001.
- 6. Donald A. Neamen; Semiconductor Physics and Devices: Basic Principles, 3rd edition, Tata McGraw-Hill, New Delhi, 2002.
- 7. M. Shur; Physics of Semiconductor Devices, Prentice Hall of India, New Delhi, 1995.
- 8. Pallab Bhattacharya; Semiconductor Optoelectronic Devices, Prentice Hall of India, New Delhi, 1995.
- 9. S.M. Sze; Physics of Semiconductor Devices, 2nd edition, Wiley Eastern Ltd., New Delhi, 1985.

Access to the Course

The course is available for all the students admitted for Master of Science in Physics.

Methods of Assessment

The assessment pattern would be 60:40, 60% for Semester End Examination (SEE) and 40% for Continuous Internal Assessment (CIA). The structure of the SEE and CIA would be as recommended by the Board of Studies and approved by the Board of Examination and the Academic Council of the college.

Pattern of Evaluation

The Examination/Evaluation pattern shall be framed by the Board of Examination with its final approval from the Academic Council of the College.