

# REVISED SYLLABUS ACCORDING TO CBCS NEP2020 SECOND-YEAR OF MASTER OF SCIENCE IN PHYSICS

COURSE TITLE:- ELECTRONIC DESIGN SEMESTER - IV W.E.F. 2024 - 2025

## RECOMMENDED BY THE BOARD OF STUDIES IN PHYSICS AND APPROVED BY THE ACADEMIC COUNCIL

Devrukh Shikshan Prasarak Mandal's

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and Vid. Dadasaheb Pitre Science College (Autonomous), Devrukh. Tal.Sangmeshwar, Dist. Ratnagiri-415804, Maharashtra, India

## Academic Council Item No: dated 19 April 2024

| : | Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre |
|---|------------------------------------------------|
|   | Commerce, and Vid. Dadasaheb Pitre Science     |
|   | College (Autonomous), Devrukh. Tal.            |
|   | Sangmeshwar, Dist. Ratnagiri-415804,           |
| : | University of Mumbai                           |
| : | Master of Science                              |
| : | Physics                                        |
| : | Second Year                                    |
| : | Fourth                                         |
| : | 04                                             |
| : | Electronic Design                              |
| : | S610PHT                                        |
| : | Major                                          |
|   |                                                |
| : | Any student admitted to Second year of M.Sc,   |
|   | degree programme in adherence to Rules and     |
|   | Regulations of the University of Mumbai and    |
|   | Government of Maharashtra.                     |
| : | 40%                                            |
| : | Formative and Summative                        |
| : | PG                                             |
| : | 60:40                                          |
|   |                                                |
| : | NEP-CBCS                                       |
| : | 2024 - 2025                                    |
|   |                                                |
|   | :                                              |

## **Syllabus for First Year of Master of Science in Physics**

(With effect from the academic year 2024 - 2025)

SEMESTER - IV Paper – Physics Paper –III

Course Title: Electronic Design

No. of Credits - 04

Type of Vertical: Major COURSE CODE: S610PHT

## Learning Outcomes Based on BLOOM's Taxonomy:

| After completing the course, the learner will be able to |                    |                                                                                                                                                           |  |  |  |  |
|----------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Course Learning Outcome No.                              | Blooms<br>Taxonomy | Course Learning Outcome                                                                                                                                   |  |  |  |  |
| CLO-01                                                   | Remember           | Identify various circuit elements                                                                                                                         |  |  |  |  |
| CLO-02                                                   | Understand         | Understand the use of various circuit elements                                                                                                            |  |  |  |  |
| CLO-03                                                   | Understand         | Understand working of Analog-to-Digital Converter (ADCs) and Digital-to-Analog Converter (DACs)                                                           |  |  |  |  |
| CLO-04                                                   | Understand         | Appreciate the importance of Electromagnetic Interference (EMI), Electromagnetic Compatibility (EMC), grounding and heat dissipation in electronic design |  |  |  |  |
| CLO-05                                                   | Understand         | Learn the basics of Audio and Video Signals and systems                                                                                                   |  |  |  |  |
| CLO-06                                                   | Apply              | Learn and use Printed Circuit Board (PCB) designing and manufacturing techniques                                                                          |  |  |  |  |

## **Syllabus for First Year of Master of Science in Physics**

(With effect from the academic year 2024 - 2025)

SEMESTER - IV Paper – Physics Paper –III

Course Title: Electronic Design

No. of Credits - 04

Type of Vertical: Major COURSE CODE: S610PHT

|               | COURSE CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |  |  |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------|--|--|--|
| Module<br>No. | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Credits | No. of<br>Lectures |  |  |  |
| 1             | Introduction to Electronic Components  Electronic Components - types, values, testing, classification (Resistor, capacitor, inductor, diode, transistor, transducers/ sensors, actuators, ICs, connectors, heat sinks), Understanding component datasheets and specifications, Introduction to through-hole and Surface Mount Device (SMD) components                                                                                                                                                                                         |         | 6                  |  |  |  |
|               | Analog Interface to Digital Circuits  Basics of analogue signals and digital signals, Analog-to-Digital Conversion (ADC) and Digital-to-Analog, Conversion (DAC), Operational amplifiers and their applications, Analog signal conditioning and filtering techniques                                                                                                                                                                                                                                                                          | 01      | 5                  |  |  |  |
|               | Introduction to Noise, EMI, and EMC Understanding noise and its sources in electronic circuits, Signal-to- noise ratio (SNR) and its importance, Electromagnetic Interference (EMI) and ElectroMagnetic Compatibility (EMC) considerations, Techniques for noise reduction and shielding                                                                                                                                                                                                                                                      |         | 4                  |  |  |  |
| 2             | Grounding Strategies and Signal Integrity Importance of grounding in electronic circuits, Grounding techniques: star grounding, ground planes, Signal integrity considerations in high-speed digital circuits, Differential signalling & common mode rejection  Heat Conduction and Dissipation  Basics of heat transfer mechanisms, Thermal management techniques in electronic circuits, Heat sinks, thermal pads, & thermal bias, Understanding junction temperature & thermal resistance                                                  | 01      | 15                 |  |  |  |
| 3             | Basics of Audio & Video Introduction to audio & video signals, Components & working principles of speakers & microphones, Amplification & signal processing for audio and video signals, Basics of audio /video interfaces  Ref – KJ, JW Schematics, Simulation, Layout Introduction to schematic tools, Circuit simulation using SPICE (Simulation Program with Integrated Circuit Emphasis), PCB layout design principles and guidelines Design considerations for EMC/EMI compliance during layout  Ref – SPICE simulator reference manual | 01      | 15                 |  |  |  |

| 4 | Construction & Manufacturing of Printed Circuit Boards (PCB)  Printed Circuit Boards (PCBs), their types, manufacturing process workflow schematic, layout, etching, drilling, solder masking, PCB materials and stack-up considerations, Design for manufacturability (DFM) and Design for Assembly (DFA) principles  Introduction to PCB assembly techniques: Surface Mount Technology (SMT), Through-Hole Technology (THT) Soldering, Testing, and Troubleshooting  Basics of soldering techniques: through-hole and surface mount soldering  Ref - DOCS | 01 | 15 |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 04 | 60 |

#### References:-

KJ: Video Demystified by Keith Jack

JW: Introduction to Digital Audio by John Watkinson, Second Edition-Focal Press (2002)

DOCS: https://www.altium.com/documentation/altium-circuitmaker

#### **Access to the Course**

The course is available for all the students admitted for Master of Science in Physics.

#### **Methods of Assessment**

The assessment pattern would be 60:40, 60% for Semester End Examination (SEE) and 40% for Continuous Internal Assessment (CIA). The structure of the SEE and CIA would be as recommended by the Board of Studies and approved by the Board of Examination and the Academic Council of the college.

### **Pattern of Evaluation**

The Examination/Evaluation pattern shall be framed by the Board of Examination with its final approval from the Academic Council of the College.