

FIRST-YEAR OF MASTER OF SCIENCE PHYSICS REVISED SYLLABUS ACCORDING TO CBCS NEP2020

COURSE TITLE:-Semiconductor Physics and Devices SEMESTER-II W.E.F. 2023-2024

RECOMMENDED BY THE BOARD OF STUDIES IN PHYSICS AND APPROVED BY THE ACADEMIC COUNCIL

Devrukh Shikshan Prasarak Mandal's

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and Vid. Dadasaheb Pitre Science College (Autonomous), Devrukh. Tal.Sangmeshwar, Dist. Ratnagiri-415804, Maharashtra, India

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce and Vid. Dadasaheb Pitre Science College, Devrukh (An Autonomous College Affiliated with University of Mumbai)

Academic Council Item No: 03 dated 8 July 2023

Name of the Implementing	:	Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre	
Institute		Commerce, and Vid. Dadasaheb Pitre Science	
		College (Autonomous), Devrukh. Tal.	
		Sangmeshwar, Dist. Ratnagiri-415804,	
Name of the Parent University	:	University of Mumbai	
Name of the Programme	:	Master of Science	
Name of the Department	:	Physics	
Name of the Class	:	First Year	
Semester	:	Second	
No. of Credits	:	02	
Title of the Course	:	Semiconductor Physics and Devices	
Course Code	:	S516PHT	
Name of the Vertical in adherence	:	Elective	
to NEP 2020			
Eligibility for Admission	:	BSc in Physics	
Passing Marks	:	40%	
Mode of Assessment	:	Formative and Summative	
Level	:	PG	
Pattern of Marks Distribution for	:	60:40	
TE and CIA			
Status	:	NEP-CBCS	
To be implemented from Academic	:	2023-2024	
Year			
Ordinances /Regulations (if any)			

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce and Vid. Dadasaheb Pitre Science College, Devrukh (An Autonomous College Affiliated with University of Mumbai)

3

Syllabus for First Year of Master of Science in Physics

(With effect from the academic year 2023-2024)

SEMESTER - II

Course Title: Semiconductor Physics and Devices

Type of Vertical: Elective

Learning Outcomes Based on BLOOM's Taxonomy:

After completing the course, the learner will be able to...

Course Learning Outcome No.	Blooms Taxonomy	Course Learning Outcome
CLO-01	Remember	Recall the basics of semiconductors and devices
CLO-02	Understand	Understand the classification of semiconductors and carrier transport phenomenon
CLO-03	Analyze	Explain the fabrication of various semiconductor devices
CLO-04	Understand	Understand the working of devices like MESFET, MODFET etc

No. of Credits - 02

COURSE CODE: S516PHT

Syllabus for First Year of Master of Science in Physics

(With effect from the academic year 2023-2024)

COURSE CONTENT

SEMESTER - II

Paper No-Physics-VI

Course Title: Semiconductor Physics and Devices

Type of Vertical: Elective

No. of Credits - 02

COURSE CODE: S516PHT

Module No.	Content	Credits	No. of Lectures				
1	Semiconductor Devices II: Metal – Semiconductor Contacts: Schottky barrier – Energy band relation, Capacitance-voltage (C-V) characteristics, Current-voltage (I-V) characteristics; Ideality factor, Barrier height and carrier concentration measurements; Ohmic contacts. Bipolar Junction Transistor (BJT): Static Characteristics; Frequency Response and Switching. Semiconductor heterojunctions, Heterojunction bipolar transistors, Quantum well structures.	01	15				
2	Semiconductor Devices III: Metal-semiconductor field effect transistor (MESFET)- Device structure, Principles of operation, Current voltage (I-V) characteristics, High frequency performance. Modulation doped field effect transistor (MODFET); Introduction to ideal MOS device; MOSFET fundamentals, Measurement of mobility, channel conductance etc. from I_{ds} vs, V_{ds} and I_{ds} vs V_{g} characteristics. Introduction to Integrated circuits.	01	15				
	Total	02	30				

Main References:

- 1. S.M. Sze; Semiconductor Devices: Physics and Technology, 2nd edition, John Wiley, New York, 2002.
- 2. B.G. Streetman and S. Benerjee; Solid State Electronic Devices, 5th edition, Prentice Hall of India, NJ, 2000.
- 3. W.R. Runyan; Semiconductor Measurements and Instrumentation, McGraw Hill, Tokyo, 1975.
- 4. Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall, Englewood Cliffs, N.J., 1984.
- 5. Jasprit Singh; Semiconductor Devices: Basic Principles, John Wiley, New York, 2001.
- 6. Donald A. Neamen; Semiconductor Physics and Devices: Basic Principles, 3rd edition, Tata McGraw-Hill, New Delhi, 2002.

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce and Vid. Dadasaheb Pitre Science College, Devrukh (An Autonomous College Affiliated with University of Mumbai)

- 7. M. Shur; Physics of Semiconductor Devices, Prentice Hall of India, New Delhi, 1995.
- 8. Pallab Bhattacharya; Semiconductor Optoelectronic Devices, Prentice Hall of India, New Delhi, 1995.
- 9. S.M. Sze; Physics of Semiconductor Devices, 2nd edition, Wiley Eastern Ltd., New Delhi, 1985.

Access to the Course

The course is available for all the students admitted for Master of Science in Physics.

Methods of Assessment

The assessment pattern would be 60:40, 60% for Semester End Examination (SEE) and 40% for Continuous Internal Assessment (CIA). The structure of the SEE and CIA would be as recommended by the Board of Studies and approved by the Board of Examination and the Academic Council of the college.

Pattern of Evaluation

The Examination/Evaluation pattern shall be framed by the Board of Examination with its final approval from the Academic Council of the College.