

Third-Year of Bachelor of Science Major Physics Revised syllabus according to CBCS NEP - 2020

Course Title: Electrodynamics

SEMESTER-V

W.E.F. 2025-2026

RECOMMENDED BY THE BOARD OF STUDIES IN PHYSICS AND

APPROVED BY THE ACADEMIC COUNCIL
Devrukh Shikshan flrasarak Mandal's
Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and
Vid. Dadasaheb flitre Science College (Autonomous), Devrukh.
Tal.Sangmeshwar, Dist. Ratnagiri-415804, Maharashtra, India

Academic Council Item No: 02/2025

Name of the Implementing	:	Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre	
Institute		Commerce, and Vid. Dadasaheb Pitre Science	
		College (Autonomous), Devrukh. Tal.	
		Sangmeshwar, Dist. Ratnagiri-415804,	
Name of the Parent University	:	University of Mumbai	
Name of the Programme	:	Bachelor of Science	
Name of the Department	:	Physics	
Name of the Class	:	Third Year	
Semester	:	Five	
Paper	:	III	
No. of Credits	:	02	
Title of the Course	:	Electrodynamics	
Course Code	:	S303PHT	
Name of the Vertical in adherence	:	Major	
to NEP 2020			
Eligibility for Admission	:		
Passing Marks	:	40%	
Mode of Assessment	:	Formative and Summative	
Level	:	5.5	
Pattern of Marks Distribution for	:	60:40	
SEE and CIA			
Status	:	NEP-CBCS	
To be implemented from Academic	:	2025-2026	
Year			
Ordinances /Regulations (if any)			

Syllabus for Third Year of Bachelor of Science in Physics

(With effect from the academic year 2025-2026)

SEMESTER - V Physics Paper – III

Course Title: Electrodynamics No. of Credits – 02

Type of Vertical: Major COURSE CODE: S303PHT

Learning Outcomes Based on BLOOM's Taxonomy:

After completing the course, the learner will be able to...

Course Learning Outcome No.	Course Learning Outcome
Outcome No.	
CLO-01	Understand core concepts from the theory of static electric and magnetic fields.
CLO-02	Understand the inter-relation of electric and magnetic fields
CLO-03	Derive the important relations in electromagnetic theory
CLO-04	Understand the electromagnetic concept of waves and their propagation
CLO-05	Solve theory based analytical problems related to electromagnetic theory
CLO-06	Solve numerical problems related to electromagnetic theory

Syllabus for Third Year of Bachelor of Science in Physics

(With effect from the academic year 2025-2026)

SEMESTER-V Paper - Physics Paper - III

Course Title: Electrodynamics No. of Credits – 02

Type of Vertical: Major COURSE CODE: S303PHT

	COURSE CONTENT					
Module	Content	Credits	Lectures			
1	Unit - I Coulomb & Gauss law, The divergence of E, Applications of Gauss' law, The curl of E. Introduction to potential, Comments on potential, The potential of a localized charge distribution. The work done to move a charge, Energy of a point and continuous charge distribution. Conductors, Basic properties, induced charges. Ref DJG: 2.1.1 to 2.5.2					
	Dielectrics, Induced Dipoles, Alignment of polar molecules, Polarization, Bound charges and their physical interpretation, Gauss' law in presence of dielectrics, A deceptive parallel, Susceptibility, Permittivity, Dielectric constant and relation between them, Energy in dielectric systems. Ref DJG: 4.1.1 to 4.4.3 (skip 4.4.2)	01	15			
	Review of Biot-Savart's law and Ampere's law, Straight-line currents, The Divergence and Curl of B , Applications of Ampere's Law in the case of a long straight wire and a long solenoid, , Magnetic Vector Potential. Ref DJG: 5.1.1 to 5.4.2					
2	Unit – II Magnetization, Bound currents and their physical interpretation, Ampere's law in magnetized materials, A deceptive parallel, Magnetic susceptibility and permeability, Energy in magnetic fields, Comparison of Electro & Magnetostatics Ref DJG: 6.1.1 to 6.4.1 Concept of EMF, Faraday's law in integral and differential form,					
	Electrodynamics before Maxwell, Maxwell's correction to Ampere's law, Maxwell's equations, Magnetic charge, inductance, Maxwell's equations in matter. Ref DJG: 7.1.1 to 7.3.5	01	15			
	The continuity equation, Poynting's theorem, Newton's 3 rd law, The wave equation for E and B , Monochromatic Plane waves, Energy, momentum and Poynting vector in EM waves, Propagation in linear media Ref DJG: 8.1.1 to 8.2.1, 9.1.1 to 9.2.3					
	Total	02	30			

References:

• **DJG**: Introduction to Electrodynamics by David J Griffith

Access to the Course

The course is available for students admitted for Bachelor of Science.

Methods of Assessment

The assessment pattern would be 60:40, 60% for Semester End Examination (SEE) and 40% for Continuous Internal Assessment (CIA). The structure of the SEE and CIA would be as recommended by the Board of Studies and approved by the Board of Examination and the Academic Council of the college.

Pattern of Evaluation

The Examination/Evaluation pattern shall be framed by the Board of Examination with its final approval from the Academic Council of the College.