

Third-Year of Bachelor of Science Major Physics Revised syllabus according to CBCS NEP - 2020

Course Title: Classical Mechanics

SEMESTER-VI

W.E.F. 2025-2026

RECOMMENDED BY THE BOARD OF STUDIES IN PHYSICS AND

APPROVED BY THE ACADEMIC COUNCIL
Devrukh Shikshan flrasarak Mandal's
Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and
Vid. Dadasaheb flitre Science College (Autonomous), Devrukh.
Tal.Sangmeshwar, Dist. Ratnagiri-415804, Maharashtra, India

Academic Council Item No: 02/2025

Name of the Implementing	:	Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre		
Institute		Commerce, and Vid. Dadasaheb Pitre Science		
		College (Autonomous), Devrukh. Tal.		
		Sangmeshwar, Dist. Ratnagiri-415804,		
Name of the Parent University	:	University of Mumbai		
Name of the Programme	:	Bachelor of Science		
Name of the Department	:	Physics		
Name of the Class	:	Third Year		
Semester	:	Six		
Paper	:	Ι		
No. of Credits	:	02		
Title of the Course	:	Classical Mechanics		
Course Code	:	S310PHT		
Name of the Vertical in adherence	:	Major		
to NEP 2020				
Eligibility for Admission	:	Any student admitted to third year of BSc- Physics		
		degree program in adherence to rules and		
		regulations of the University of Mumbai and Govt.		
		of Maharashtra		
Passing Marks	:	40%		
Mode of Assessment	:	Formative and Summative		
Level	:	5.5		
Pattern of Marks Distribution for	:	60:40		
SEE and CIA				
Status	:	NEP-CBCS		
To be implemented from Academic	:	2025-2026		
Year				
Ordinances /Regulations (if any)				

Syllabus for Third Year of Bachelor of Science in Physics

(With effect from the academic year 2025-2026)

SEMESTER - VI Physics Paper – I

Course Title: Classical Mechanics No. of Credits – 02

Type of Vertical: Major COURSE CODE: S310PHT

Learning Outcomes Based on BLOOM's Taxonomy:

After completing the course, the learner will be able to...

Course	
Learning	Course Learning Outcome
Outcome No.	
CLO-01	Understand various aspects of motion under central force
CLO-02	Understand the representation of motion in a rotating co-ordinate system
CLO-03	Understand the features of fluid motion.
CLO-04	Understand the treatment of rotation of a rigid body using inertia tensor
CLO-05	Derive equations related to the theory
CLO-06	Solve analytical problems using Lagrangian method
CLO-07	Solve numerical problems related to various topics

Syllabus for Third Year of Bachelor of Science in Physics

(With effect from the academic year 2025-2026)

SEMESTER - VI Physics Paper – I

Course Title: Classical Mechanics Credits – 02

Type of Vertical: Major COURSE CODE: S310PHT

	COURSE CONTENT					
Module	Content	Credits	Lectures			
1	1. Motion under a central force, the central force inversely proportional to the square of the distance, Elliptic orbits, The Kepler problem. Ref KRS: 3.13 to 3.15					
	Kei KKS. 5.15 to 5.15					
	2. Moving origin of coordinates, Rotating coordinate systems, Laws of motion on the rotating earth, The Foucault pendulum, Larmor's theorem.	01 15				
	Ref KRS: 7.1 to 7.5					
	3. D'Alembert's principle, Constraints, Examples of holonomic constraints, examples of nonholonomic constraints, degrees of freedom and generalized coordinates, virtual displacement, virtual work, D'Alembert's principle, illustrative problems.					
	Ref PVP: 4.2 to 4.9					
2	1. Lagrange's equations (using D'Alembert's principle), properties of Lagrange's equations, illustrative problems, canonical momentum, cyclic or ignorable coordinates.					
	Ref PVP: 5.2 to 5.4, 7.2, 7.3					
	2. Kinematics of moving fluids, Equation of motion for an ideal fluid, Conservation laws for fluid motion, Steady flow.	01	15			
	Ref KRS: 8.6 to 8.9					
an az tenso	3. Rigid dynamics: introduction, degrees of freedom, rotation about an axis: orthogonal matrix, Euler's theorem, Eulerian angles, inertia tensor, angular momentum of rigid body, Euler's equation of motion of rigid body, free motion of rigid body					
	Ref PVP: 16.1 to 16.6					
	Total	02	30			

References:

- **KRS**: Classical Mechanics by K. R. Symon
- **PVP:** Classical Mechanics by P. V. Panat

Access to the Course

The course is available for students admitted for Bachelor of Science.

Methods of Assessment

The assessment pattern would be 60:40, 60% for Semester End Examination (SEE) and 40% for Continuous Internal Assessment (CIA). The structure of the SEE and CIA would be as recommended by the Board of Studies and approved by the Board of Examination and the Academic Council of the college.

Pattern of Evaluation

The Examination/Evaluation pattern shall be framed by the Board of Examination with its final approval from the Academic Council of the College.