

THIRD-YEAR OF BACHELOR OF SCIENCE MAJOR PHYSICS REVISED SYLLABUS ACCORDING TO CBCS NEP2020

COURSE TITLE: SPECIAL THEORY OF RELATIVITY

SEMESTER-VI

W.E.F. 2025-2026

Recommended by the Board of Studies in PHYSICS

And

Approved by the Academic Council

Devrukh Shikshan flrasarak Mandal's

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and

Vid. Dadasaheb flitre Science College (Autonomous), Devrukh.

Tal.Sangmeshwar, Dist. Ratnagiri-415804, Maharashtra, India

Academic Council Item No: 02/2025

Name of the Implementing	:	Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre	
Institute		Commerce, and Vid. Dadasaheb Pitre Science	
		College (Autonomous), Devrukh. Tal.	
		Sangmeshwar, Dist. Ratnagiri-415804,	
Name of the Parent University	:	University of Mumbai	
Name of the Programme	:	Bachelor of Science	
Name of the Department	:	Physics	
Name of the Class	:	Third Year	
Semester	:	Six	
Paper	:	III	
No. of Credits	:	02	
Title of the Course	:	Special theory of Relativity	
Course Code	:	S312 PHT	
Name of the Vertical in adherence	:	Major	
to NEP 2020			
Eligibility for Admission	:	Any student admitted to Third year of B. Sc, degree	
		programme in adherence to Rules and Regulations	
		of the University of Mumbai and Government of	
		Maharashtra.	
Passing Marks	:	40%	
Mode of Assessment	:	Formative and Summative	
Level	:	5.5	
Pattern of Marks Distribution for	:	60:40	
SEE and CIA			
Status	:	NEP-CBCS	
To be implemented from Academic	:	2025-2026	
Year			
Ordinances /Regulations (if any)			

Syllabus for Third Year of Bachelor of Science in Physics (With effect from the academic year 2025-2026)

Semester-VI Paper No – Physics Paper – III

Course Title: Special theory of Relativity

No. of Credits – 02

Type of Vertical: Major Course Code: S312PHT

After successful completion of this course students will be able to

Course Learning Outcome No.	Course Learning Outcome
CLO-01	Remember the postulates of special relativity, Lorentz transformation equations etc.
CLO-02	Understand the transformation equations for: Space and time, velocity, frequency, mass, momentum
CLO-03	Understand the transformation equations for Electric and Magnetic Fields.
CLO-04	Solve the problems base on time dilatation, length contraction mass, momentum, energy.

Syllabus for Third Year of Bachelor of Science in Physics (With effect from the academic year 2025-2026)

Semester-VI Paper No.- Physics Paper - III

Course Title: Special theory of Relativity No. of Credits – 02

Type of Vertical: Major Course Code: S312PHT

	COURSE CONTENT				
Module	Content	Credits	No. of Lectures		
1	Relativistic Kinematics - I: Postulates of the special theory of relativity, Concept of Simultaneity, Lorentz transformations and inverse transformations of space and time. consequences of the Lorentz transformation equations: length contraction, time dilation and meson experiment, The observer in relativity, Velocity addition formula and its consequences. Aberration and Doppler effect in relativity. Ref.: RR: 2 .1 to 2. 8	01	15		
2	Relativistic Dynamics: Concept of relativistic mass (omit derivation), Relativistic definition of momentum and force, Mass-Energy relation (concept and Derivation of E= mc² a), Relativistic kinetic energy, The Relativistic relation between energy and momentum. Ref.: RR: 3.1 to3.7 Transformation of Electric and Magnetic Fields: Introduction, The interdependence of Electric and Magnetic fields, The Transformation for E and B, The field of a uniformly moving point charge Ref.: RR: 4.1 to 4.4 Modern Applications: Role of special relativity in GPS technology, particle physics, and cosmology. (Online resource)	01	15		
	Total	02	30		

References:

- 1. RR: Introduction to Special Relativity: Robert Resnick (Wiley Student Edition).
- 2. https://www.nasa.gov/image-article/einsteins-theory-of-relativity-critical-gps-seen-distant-stars
- 3. https://sathee.prutor.ai/article/physics/physics-special-theory-of-relativity

Additional references

- 1. Special theory of Relativity: A. P. French.
- 2. Concepts of Modern Physics by Arthur Beiser.

Access to the Course

The course is available for all the students admitted for Bachelor of Science.

Methods of Assessment

The assessment pattern would be 60:40, 60% for Semester End Examination (SEE) and 40% for Continuous Internal Assessment (CIA). The structure of the SEE and CIA would be as recommended by the Board of Studies and approved by the Board of Examination and the Academic Council of the college.

Pattern of Evaluation

The Examination/Evaluation pattern shall be framed by the Board of Examination with its final approval from the Academic Council of the College.