

THIRD-YEAR OF BACHELOR OF SCIENCE CHEMISTRY (MAJOR) REVISED SYLLABUS ACCORDING TO CBCS NEP2020

COURSE TITLE: **CHEMISTRY-II**SEMESTER-V
W.E.F. 2025-2026

RECOMMENDED BY THE BOARD OF STUDIES IN CHEMISTRY AND

APPROVED BY THE ACADEMIC COUNCIL

Devrukh Shikshan Prasarak Mandal's

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and Vid. Dadasaheb Pitre Science College (Autonomous), Devrukh.

Tal. Sangameshwar, Dist. Ratnagiri-415804, Maharashtra, India

Academic Council Item No: 02/2025

Name of the Implementing	:	Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre
Institute		Commerce, and Vid. Dadasaheb Pitre Science
		College (Autonomous), Devrukh. Tal.
		Sangameshwar, Dist. Ratnagiri-415804,
Name of the Parent University	:	University of Mumbai
Name of the Programme	:	Bachelor of Science
Name of the Department	:	Chemistry
Name of the Class	:	Third Year
Semester	:	Fifth
No. of Credits	:	02
Title of the Course	:	Chemistry-II
Course Code	:	S302CHT
Name of the Vertical in adherence	:	Major
to NEP 2020		
Eligibility for Admission	:	Any student admitted to Third Year of B.Sc. Degree
		Programme in adherence to Rules and Regulations
		of the University of Mumbai and Government of
		Maharashtra
Passing Marks	:	40%
Mode of Assessment	:	Formative and Summative
Level	:	5.5
Pattern of Marks Distribution for	:	40:60%
SEE and CIA		
Status	:	NEP-CBCS
To be implemented from Academic	:	2025-2026
Year		
Ordinances /Regulations (if any)		

Syllabus for Third Year of Bachelor of Science in Chemistry (With effect from the academic year 2025-2026)

SEMESTER-V Paper No.– II

Course Title: Chemistry-II No. of Credits - 02

Type of Vertical: Major COURSE CODE: S302CHT

Learning Outcomes Based on BLOOM's Taxonomy:

After completing the course, the learner will be able to					
Course Learning Outcome No.	Blooms Taxonomy	Course Learning Outcome			
CLO-01	Remember	describe correlation diagrams of various molecules, properties of group 16 & 17 elements and find symmetry elements in the molecules.			
CLO-02	Understand	explain concept of point groups, superconductivity & properties of lanthanides.			
CLO-03	Apply	differentiate between homonuclear and heteronuclear diatomic molecules, lanthanides and actinides.			
CLO-04	Analyse	solve numericals based on solid state chemistry and draw correlation diagrams.			

Syllabus for Third Year of Bachelor of Science in Chemistry

(With effect from the academic year 2025-2026)

SEMESTER-V Paper No.– II

Course Title: Chemistry-II No. of Credits - 02

Type of Vertical: Major COURSE CODE: S302CHT

	COURSE CONTENT					
Module No.	Content	Credits	No. of Hours			
1	1.1 Molecular Symmetry and Chemical Bonding (8L) 1.1.1 Molecular Symmetry Symmetry elements and Symmetry operations.	01	15			
	Concept of a Point Group with illustrations using the following point groups: (i) $C \infty v$ (ii) $D \infty h$ (iii) $C_2 v$ (iv) $C_3 v$ (v) $C_2 h$ and (vi) $D_3 h$					
	1.1.2 Molecular Orbital Theory for heteronuclear diatomic molecules and polyatomic species Comparison between homonuclear and heteronuclear diatomic					
	molecules. Heteronuclear diatomic molecules like CO, NO, HCl					
	Molecular orbital theory for H ₃ , H ₃ ⁺ , BeH ₂ , H ₂ O (correlation diagram expected).					
	1.2 Solid State Chemistry (7L)					
	1.2.1 Structures of Solids Closest packing of rigid spheres (hcp, ccp), packing density in simple cubic, bcc and fcc lattices. Relationship between density, radius of unit cell and lattice parameters. (Numerical problems expected). Stoichiometric Point defects in solids (discussion on Frenkel and Schottky defects expected).					
	1.2.2 Superconductivity Explanation of terms superconductivity, transition temperature, Meissner effect. Types & brief applications of superconductors					

2	2.1 Chemistry of Inner Transition Elements (7L)	01	15
	2.1.1 Chemistry of Lanthanides Lanthanide contraction and its consequences, Oxidation states, Ability to form complexes, Magnetic and spectral properties, Applications of lanthanides		
	2.1.2 Chemistry of Actinides Comparison between lanthanides and actinides, Chemistry of Uranium with reference to occurrence and isolation (solvent extraction method), Properties and applications of Uranium		
	2.2 Comparative Chemistry of Group 16 (4L) Electronic configurations, trends in physical properties, allotropy, Manufacture of sulphuric acid by Contact process.		
	2.3 Comparative Chemistry of Group 17 (4L) Electronic configuration, General characteristics, anomalous properties of fluorine, comparative study of acidity of oxyacids of chlorine w.r.t acidity, oxidizing properties and structures (on the basis of VSEPR theory) Chemistry of interhalogens with reference to preparations, properties and structures (on the basis of VSEPR theory)		
	Total	02	30

Access to the Course

The course is available for all the students admitted for Third Year Bachelor of Science.

Methods of Assessment

The assessment pattern would be 40:60, 60% for Semester End Examination (SEE) and 40% for Continuous Internal Assessment (CIA). The structure of the SEE and CIA would be as recommended by the Board of Studies and approved by the Board of Examination and the Academic Council of the college.

References:

- 1. D. Banerjea, Coordination chemistry, Tata McGraw Hill, New Delhi, (1993).
- 2. D. F. Shriver and P. W. Atkins, Inorganic chemistry, 3rd Ed., Oxford University Press, (1999).
- 3. N. N. Greenwood and E. Earnshaw, Chemistry of elements, Pergamon Press, Singapore, (1989).
- 4. W. L. Jolly, Modern inorganic chemistry, 2nd Ed. McGraw Hill Book Co., (1991).
- 5. B. E. Douglas and H. McDaniel, Concepts and models in inorganic chemistry, 3rd Ed., John Wiley & Sons, Inc., New York, (1994).
- 6. G. N. Mukherjee and A. Das, Elements of bioinorganic chemistry, Dhuri and Sons, Calcutta, (1988).
- 7. R. W. Hay, Bioinorganic chemistry, Ellis Harwood, England, (1984).
- 8. R. C. Mehrotra and A. Singh, Organometallic chemistry: A unified approach, Wiley Eastern, New Delhi, (1991)
