

THIRD-YEAR OF BACHELOR OF SCIENCE CHEMISTRY (MAJOR) REVISED SYLLABUS ACCORDING TO CBCS NEP2020

COURSE TITLE: CHEMISTRY PRACTICAL-I
SEMESTER-V
W.E.F. 2025-2026

RECOMMENDED BY THE BOARD OF STUDIES IN CHEMISTRY AND

APPROVED BY THE ACADEMIC COUNCIL

Devrukh Shikshan Prasarak Mandal's

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and Vid. Dadasaheb Pitre Science College (Autonomous), Devrukh.

Tal. Sangameshwar, Dist. Ratnagiri-415804, Maharashtra, India

Academic Council Item No: 02/2025

Name of the Implementing	:	Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre
Institute		Commerce, and Vid. Dadasaheb Pitre Science
		College (Autonomous), Devrukh. Tal.
		Sangameshwar, Dist. Ratnagiri-415804,
Name of the Parent University	:	University of Mumbai
Name of the Programme	:	Bachelor of Science
Name of the Department	:	Chemistry
Name of the Class	:	Third Year
Semester	:	Fifth
No. of Credits	:	02
Title of the Course	:	Practical-I
Course Code	:	S304CHP
Name of the Vertical in adherence	:	Major
to NEP 2020		
Eligibility for Admission	:	Any student admitted to Third Year of B.Sc. Degree
		Programme in adherence to Rules and Regulations
		of the University of Mumbai and Government of
		Maharashtra
Passing Marks	:	40%
Mode of Assessment	:	Summative at the end of semester
Level	:	5.5
Pattern of Marks Distribution for	:	100 %
SEE and CIA		
Status	:	NEP-CBCS
To be implemented from Academic	:	2025-2026
Year		
Ordinances /Regulations (if any)		

Syllabus for Third Year of Bachelor of Science in Chemistry

(With effect from the academic year 2025-2026)

SEMESTER-V Paper No.– I

Course Title: Practical-I No. of Credits - 02

Type of Vertical: Major COURSE CODE: S304CHP

Learning Outcomes Based on BLOOM's Taxonomy:

After completing the course, the learner will be able to					
Course Learning Outcome No.	Blooms Taxonomy	Course Learning Outcome			
CLO-01	Apply	determine molecular weight of compound by Rast method and chemical type of binary solid-solid mixture			
CLO-02	Analyse	Investigate velocity constant of alkaline hydrolysis of ethyl acetate by conductometric method and separate binary solid-solid mixture using separating reagent.			
CLO-03	Evaluate	determine acidic and basic dissociation constants of amino acid and calculate isoelectric point.			

Syllabus for Third Year of Bachelor of Science in Chemistry

(With effect from the academic year 2025-2026)

SEMESTER-V Paper No.– I

Course Title: Practical-I No. of Credits - 02

Type of Vertical: Major COURSE CODE: S304CHP

	COURSE CONTENT					
Sr. No.	Content	Credits	No. of Hours			
1	Physical Chemistry	02	60			
	I. Non-Instrumental					
	 Colligative Properties To determine the molecular weight of compound by Rast Method Chemical Kinetics To determine the order between K₂S₂O₈ and KI by fractional change method. 					
	II. Instrumental					
	1. Potentiometry					
	To determine the solubility product and solubility of AgCl potentiometrically using chemical cell.					
	2. Conductometry					
	To determine the velocity constant of alkaline hydrolysis of ethyl acetate by conductometric method.					
	3. pH-metry					
	To determine acidic and basic dissociation constants of amino acid and hence to calculate isoelectric point.					
2	Organic Chemistry					
	Separation of Binary solid-solid mixture (2.0 gms mixture be given)					
	 Minimum Six mixtures to be completed by the students. Components of the mixture should include water soluble and water insoluble acids (carboxylic acid), water insoluble phenols (2-naphthol, 1-naphthol), water insoluble bases (nitroanilines), water soluble neutral 					

	Total	02	60
2	 (anilides, amides, m-DNB, hydrocarbons). 3. After correct determination of chemical type, the separating reagent should be decided by the student for separation. 4. Follow separation scheme with the bulk sample of binary mixture. 5. After separation into component A and component B, one component (decided by the examiner) is to be analyzed and identified with melting point. 		
	(thiourea) and water insoluble neutral compounds		

Access to the Course

The course is available for all the students admitted for Third Year Bachelor of Science.

Methods of Assessment

Practical courses, Vocational Skill Courses, Skill Enhancement Courses and the courses having laboratory sessions shall be assessed at the end of each semester.

References:

- 1. Practical Physical Chemistry 3rd edition A.M. James and F.E. Prichard, Longman publication
- 2. Experiments in Physical Chemistry R.C. Das and B. Behra, Tata Mc Graw Hill
- 3. Advanced Practical Physical Chemistry J.B. Yadav, Goel Publishing House
- 4. Advanced Experimental Chemistry. Vol-I J.N. Gurtu and R Kapoor, S. Chand and Co.
- 5. Experimental Physical Chemistry by V.D. Athawale.
- 6. Senior Practical Physical Chemistry By: B. D. Khosla, V. C. Garg and A. Gulati, R Chand and Co. 2011
- 7. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009)
- 8. Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis, University Press (2000). Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009)
- 9. Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical Organic chemistry, 5th Ed., Pearson (2012)
- 10. Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., Textbook of Practical Organic Chemistry, Prentice-Hall, 5th edition, 1996.
