

THIRD-YEAR OF BACHELOR OF SCIENCE CHEMISTRY (MAJOR) REVISED SYLLABUS ACCORDING TO CBCS NEP2020

COURSE TITLE: **ANALYTICAL CHEMISTRY-II**SEMESTER-VI

W.E.F. 2025-2026

RECOMMENDED BY THE BOARD OF STUDIES IN CHEMISTRY AND

APPROVED BY THE ACADEMIC COUNCIL

Devrukh Shikshan Prasarak Mandal's

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and Vid. Dadasaheb Pitre Science College (Autonomous), Devrukh.

Tal. Sangameshwar, Dist. Ratnagiri-415804, Maharashtra, India

Academic Council Item No: 02/2025

Name of the Implementing	:	Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre
Institute		Commerce, and Vid. Dadasaheb Pitre Science
		College (Autonomous), Devrukh. Tal.
		Sangameshwar, Dist. Ratnagiri-415804,
Name of the Parent University	:	University of Mumbai
Name of the Programme	:	Bachelor of Science
Name of the Department	:	Chemistry
Name of the Class	:	Third Year
Semester	:	Sixth (VI)
No. of Credits	:	02
Title of the Course	:	Analytical Chemistry-II
Course Code	:	S315CHT
Name of the Vertical in adherence	:	Elective
to NEP 2020		
Eligibility for Admission	:	Any student admitted to Third Year of B.Sc. Degree
		Programme in adherence to Rules and Regulations of
		the University of Mumbai and Government of
		Maharashtra
Passing Marks	:	40%
Mode of Assessment	:	Formative and Summative
Level	:	5.5
Pattern of Marks Distribution for	:	40:60%
SEE and CIA		
Status	:	NEP-CBCS
To be implemented from Academic	:	2025-2026
Year		
Ordinances /Regulations (if any)		

Syllabus for Third Year of Bachelor of Science in Chemistry

(With effect from the academic year 2025-2026)

SEMESTER-VI Paper No. IV

Course Title: Analytical Chemistry-II No. of Credits - 02

Type of Vertical: Elective-I COURSE CODE: S315CHT

Learning Outcomes Based on BLOOM's Taxonomy:

After Completing the Programme, Student will be able to,

Bloom Level	CO No.	Course Outcome
Understand	CO1	understand the composition and methods of analysis of food products and cosmetics
Understand	CO2	Understand the types, mechanism, applications of ion exchange resins and factors affecting ion exchange
Understand	CO3	Understand the theory, principle and instrumentation of TGA and DTA
Apply	CO4	Employ the theory of TGA, DTA for the study of various materials

Syllabus for Third Year of Bachelor of Science in Chemistry

(With effect from the academic year 2025-2026)

SEMESTER-VI Paper No.- IV

Course Title: Analytical Chemistry-II No. of Credits - 02

Type of Vertical: Elective-I COURSE CODE: S315CHT

	COURSE CONTENT					
Module No.	Content	Credits	No. of Hours			
1	FOOD AND COSMETICS ANALYSIS AND ION	01	15			
	EXCHANGE CHROMATOGRAPHY					
	1.1. Food chemistry (5L)					
	1.1.1. Food processing and preservation: Introduction, need,					
	chemical methods, action of chemicals (Sulphur dioxide, boric					
	acid, sodium benzoate, acetic acid, sodium chloride and sugar) and					
	pH control, Physical methods (Pasteurization and Irradiation)					
	1.1.2. Study and analysis of following food products and					
	detection of adulterants:					
	1) Milk: Composition & nutrients, types of milk (fat free, organic					
	and lactose milk), Analysis of milk for lactose by Lane Eynon's					
	Method, adulterants					
	2) Honey: Composition, Analysis of reducing sugars in honey by					
	Coles Ferricyanide method, adulterants					
	3) Tea: Composition, types (green tea and mixed tea), Analysis of					
	Tannin by Lowenthal's method, adulterants					
	1.2. Cosmetics (5L)					
	1.2.1. Introduction and sensory properties					
	Study of cosmetic products:					
	1) Face powder: Composition, Estimation of calcium and					
	magnesium by complexometry					
	2) Lipstick: Constituents, Ash analysis for water soluble salts:					
	borates, carbonates & zinc oxide					
	3) Deodorants and Antiperspirants: Constituents, properties,					
	Estimation of zinc by gravimetrically.					
	1.3 Ion Exchange Chromatography (5L)					
	1.3.1. Introduction, Principle.					
	1.3.2. Types of Ion Exchangers, Ideal properties of resin.					
	1.3.3. Ion Exchange equilibria and mechanism, selectivity					
	coefficient & separation factor, factors affecting separation of ions.					
	1.3.4. Ion exchange capacity and its determination for cation and					
	anion exchangers.					

2	THERMAL METHODS OF ANALYSIS	01	15
	2.1. Thermogravimetric Analysis (TGA)		
	2.1.1 Introduction to various thermal methods		
	2.1.2. Principle, Instrumentation-block diagram, thermobalance		
	(Basic components: balance, furnace, temperature measurement		
	and control, recorder)		
	2.1.3. Thermogram (TG curve) for CaC ₂ O ₄ .H ₂ O and CuSO ₄ .5H ₂ O		
	2.1.4. Factors affecting thermogram-Instrumental factors and		
	Sample characteristics		
	2.1.5. Applications: Determination of drying and ignition		
	temperature range, Determination of percent composition of binary		
	mixtures. (Estimation of Calcium and Magnesium oxalate)		
	2.2. Differential Thermal Analysis (DTA):		
	2.2.1. Principle, Instrumentation, and Reference material used		
	2.2.2. Differential thermogram (DTA curve) CaC ₂ O ₄ .H ₂ O and		
	CuSO ₄ .5H ₂ O		
	2.2.3. Applications, Comparison between TGA and DTA.		
	Total	02	30

Access to the Course

The course is available for all the students admitted for Third Year Bachelor of Science.

Methods of Assessment

The assessment pattern would be 40:60, 60% for Semester End Examination (SEE) and 40% for Continuous Internal Assessment (CIA). The structure of the SEE and CIA would be as recommended by the Board of Studies and approved by the Board of Examination and the Academic Council of the college.

References:

- 1. D. Harvey, Modern Analytical Chemistry, The McGraw-Hill Pub. 1st Edition (2000).
- 2. H.S. Ray, R Sridhar and K.P. Abraham, Extraction of Nonferrous Metals, Affiliated East-West Press Pvt. Ltd. New Delhi (1985) reprint 2007.
- 3. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denney, Vogel's Textbook of Quantitative Chemical Analysis, Fifth edition, ELBS Publication (1996).
- 4. D.A. Skoog D.M. West and F.J. Holler, Fundamentals of Analytical Chemistry, 7th Edition (printed in India in 2001) ISBN Publication.
- 5. Analytical Chemistry, J.G. Dick,1973 Tata McGraw Hill Publishing Co. Ltd. New Delhi.
- 6. Quantitative analysis, Dey& Underwood, Prentice Hall of India, Pvt. Ltd. New Delhi.
- 7. Fundamentals of Analytical Chemistry, Skoog 8th edition, Saunders college publishing.
