

THIRD-YEAR OF BACHELOR OF SCIENCE CHEMISTRY (MAJOR) REVISED SYLLABUS ACCORDING TO CBCS NEP2020

COURSE TITLE: **POLYMER CHEMISTR-II**SEMESTER-VI
W.E.F. 2025-2026

RECOMMENDED BY THE BOARD OF STUDIES IN CHEMISTRY AND

APPROVED BY THE ACADEMIC COUNCIL

Devrukh Shikshan Prasarak Mandal's

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and Vid. Dadasaheb Pitre Science College (Autonomous), Devrukh.

Tal. Sangameshwar, Dist. Ratnagiri-415804, Maharashtra, India

Academic Council Item No: 02/2025

Name of the Implementing	:	Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre		
Institute		Commerce, and Vid. Dadasaheb Pitre Science		
		College (Autonomous), Devrukh. Tal.		
		Sangameshwar, Dist. Ratnagiri-415804,		
Name of the Parent University	:	University of Mumbai		
Name of the Programme	:	Bachelor of Science		
Name of the Department	:	Chemistry		
Name of the Class	:	Third Year		
Semester	:	Sixth (VI)		
No. of Credits	:	02		
Title of the Course	:	Polymer Chemistry-II		
Course Code	:	S317CHT		
Name of the Vertical in adherence	:	Elective		
to NEP 2020				
Eligibility for Admission	:	Any student admitted to Third Year of B.Sc. Degree		
		Programme in adherence to Rules and Regulations of		
		the University of Mumbai and Government of		
		Maharashtra		
Passing Marks	:	40%		
Mode of Assessment	:	Formative and Summative		
Level	:	5.5		
Pattern of Marks Distribution for	:	40:60%		
SEE and CIA				
Status	:	NEP-CBCS		
To be implemented from Academic	:	2025-2026		
Year				
Ordinances /Regulations (if any)				

Syllabus for Third Year of Bachelor of Science in Chemistry

(With effect from the academic year 2025-2026)

SEMESTER-VI Paper No. V

Course Title: Polymer Chemistry-II No. of Credits - 02

Type of Vertical: Elective-II COURSE CODE: S317CHT

Learning Outcomes Based on BLOOM's Taxonomy:

After Completing the Programme, Student will be able to,

Bloom Level	CO No.	Course Outcome
Understand	CO1	Understand degradation mechanism and crystallinity in polymers.
Understand	CO2	describe analysis and spectroscopic, physical testing methods of polymers.
Understand	CO3	understand different processing techniques of polymers

Syllabus for Third Year of Bachelor of Science in Chemistry

(With effect from the academic year 2025-2026)

SEMESTER-VI Paper No.– V

Course Title: Polymer Chemistry-II No. of Credits - 02

Type of Vertical: Elective-II COURSE CODE: S317CHT

	COURSE CONTENT				
Module No.	Content		No. of Hours		
1	THE PROPERTIES OF POLYMERS, ANALYSIS AND PROCESSING	01	15		
	1.1 POLYMER DEGRADATION (3L)				
	1.1.1 Types of Polymer Degradation, Thermal degradation, mechanical degradation, photodegradation, Photo stabilizers.				
	1.2 CRYSTALLINITY IN POLYMERS (04L)				
	1.2.1 Introduction, Degree of Crystallinity, Crystallisability, crystallites				
	1.2.2 Factors affecting Crystallisability, Effect of crystallinity on the properties of polymers.				
	1.3 ANALYSIS AND TESTING OF POLYMERS (05L)				
	1.3.1 Spectroscopic Methods: IR, NMR				
	1.3.2 Thermal analysis: Differential Scanning Calorimeter (DSC), Thermo Gravimetric Analysis (TGA)				
	1.3.3 Physical testing: Mechanical properties, Thermal properties, Optical properties, Electrical properties, Chemical properties.				
	1.4 INTRODUCTION TO POLYMER PROCESSING (3L)				
	1.4.1 Processing Techniques: Calendaring, die casting, compression moulding, injection moulding, blow moulding and reinforcing.				

2 INDUSTRIAL AND BIOPOLYMERS		01	15
2.1 INDUSTRIAL POLYMERS (7L)			
2.1.1 Preparation of fiber forming polymers, elastomeric mate	2.1.1 Preparation of fiber forming polymers, elastomeric material.		
2.1.2 Thermoplastics: Polyethylene, Polypropylene, polystyr	2.1.2 Thermoplastics: Polyethylene, Polypropylene, polystyrene,		
Polyacrylonitrile, Poly Vinyl Chloride, Poly tetrafluoro ethyl	Polyacrylonitrile, Poly Vinyl Chloride, Poly tetrafluoro ethylene,		
nylon and polyester.			
2.1.3 Thermosetting Plastics: Phenol formaldehyde and epo	2.1.3 Thermosetting Plastics: Phenol formaldehyde and epoxide		
resin. Elastomers: Natural rubber and synthetic rubber - Buna	resin. Elastomers: Natural rubber and synthetic rubber - Buna - N,		
Buna-S and neoprene.			
2.1.4 Conducting Polymers: Elementary ideas, examples:	poly		
Sulphur nitriles, poly phenylene, poly pyrrole and poly acetyl	ene.		
2.2 BIO POLYMERS AND BIODEGRADAR	BLE		
POLYMERS (8L)			
2.2.1 Structure of proteins, properties and applications cellulose derivatives-Cotton and rayon.	s of		
2.2.2 Cellulose plastics; cellulose acetate, cellulose nitrate	and		
regenerated cellulose. Structure and applications of starch, cl			
and chitosan.			
2.2.3 Commercial applications of natural polymers – lig	gnin,		
Kerogen, amber, asphaltenes,			
2.2.4 Biodegradable polymers, examples. Biomed	lical		
applications of polymers.			
Total		02	30

Access to the Course

The course is available for all the students admitted for Third Year Bachelor of Science.

Methods of Assessment

The assessment pattern would be 40:60, 60% for Semester End Examination (SEE) and 40% for Continuous Internal Assessment (CIA). The structure of the SEE and CIA would be as recommended by the Board of Studies and approved by the Board of Examination and the Academic Council of the college.

References:

- 1. Polymer Science by V. R. Gowarikar, N. V. Visvanathan, Jaydev Shreedhar, New Age International Ltd. Publisher 1996. (Reprint 2012)
- 2. Textbook of Polymer Science by Fred Billmeyer, 3rd Edn. John Wiley and Sons New York 1984. (Reprint2008)
- 3. Introductory Polymer Chemistry by G. S. Misra New Age International (P) Ltd. Publisher 1996.
- 4. Polymer Chemistry by Charles E. Carraher (Jr.), 6th Edn, (FirstIndian Print 2005), New York-Basel.
- 5. Inorganic Polymers by G. R. Chatwal Himalaya Publishing House 1st Edn. 1996
 Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce and Vid. Dadasaheb Pitre Science
 College, Devrukh (An Autonomous College Affiliated with University of Mumbai)

- 6. Polymer Science–A Text Book by V. K. Ahluwalia, Anuradha Mishra.
- 7. Principles of Polymer Science by P. Bahadur, N. V. Sastry, 2nd Edn, Narosa Publishing House.
- 8. Polymer Chemistry by Ayodhya Singh, 2008, Published by Campus Book International, New Delhi
- 9. Organic Polymer Chemistry by Jagdamba Singh, R. C. Dubey, 4th Edn, 2012.
- 10. Advanced Polymer Chemistry by V. K. Selvaraj, 1st Edn, 2008, Published by Campus International, New Delhi.
- 11. Organic Polymer Chemistry by V. Jain, IVY Publishing House, New Delhi.
- 12. Principles of Polymerization by George Odian 3rd Edn. John Wiley & Sons New York.
