

THIRD-YEAR OF BACHELOR OF SCIENCE CHEMISTRY (MAJOR) REVISED SYLLABUS ACCORDING TO CBCS NEP2020

COURSE TITLE: ANALYTICAL CHEMISTRY-I

SEMESTER-V W.E.F. 2025-2026

RECOMMENDED BY THE BOARD OF STUDIES IN CHEMISTRY AND

APPROVED BY THE ACADEMIC COUNCIL

Devrukh Shikshan Prasarak Mandal's

Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre Commerce, and Vid. Dadasaheb Pitre Science College (Autonomous), Devrukh.

Tal. Sangameshwar, Dist. Ratnagiri-415804, Maharashtra, India

Academic Council Item No: 02/2025

Name of the Implementing	:	Nya. Tatyasaheb Athalye Arts, Ved. S. R. Sapre
Institute		Commerce, and Vid. Dadasaheb Pitre Science
		College (Autonomous), Devrukh. Tal.
		Sangameshwar, Dist. Ratnagiri-415804,
Name of the Parent University	:	University of Mumbai
Name of the Programme	:	Bachelor of Science
Name of the Department	:	Chemistry
Name of the Class	:	Third Year
Semester	:	Fifth (V)
No. of Credits	:	02
Title of the Course	:	Analytical Chemistry-I
Course Code	:	S306CHT
Name of the Vertical in adherence	:	Elective
to NEP 2020		
Eligibility for Admission	:	Any student admitted to Third Year of B.Sc. Degree
		Programme in adherence to Rules and Regulations
		of the University of Mumbai and Government of
		Maharashtra
Passing Marks	:	40%
Mode of Assessment	:	Formative and Summative
Level	:	5.5
Pattern of Marks Distribution for	:	40:60%
SEE and CIA		
Status	:	NEP-CBCS
To be implemented from Academic	:	2025-2026
Year		
Ordinances /Regulations (if any)		

Syllabus for Third Year of Bachelor of Science in Chemistry (With effect from the academic year 2025-2026)

SEMESTER-V Paper No. IV

Course Title: Analytical Chemistry-I No. of Credits - 02

Type of Vertical: Elective-I COURSE CODE: S306CHT

Learning Outcomes Based on BLOOM's Taxonomy:

After Completing the Programme, Student will be able to,

Bloom Level	CO No.	Course Outcome
Remember	CO1	describe the error, accuracy and precision in analysis
Apply	CO2	calculate the measures of central tendency and dispersion
Apply	CO3	apply the theory of complexometric titrations for the estimations of metal ions
Understand	CO4	Understand the theory, principle, instrumentation and applications of FES, AAS, GC and HPLC

Syllabus for Third Year of Bachelor of Science in Chemistry

(With effect from the academic year 2025-2026)

SEMESTER-V Paper No.- IV

Course Title: Analytical Chemistry-I No. of Credits - 02

Type of Vertical: Elective-I COURSE CODE: S306CHT

COURSE CONTENT				
Module No.	Content	Credits	No. of Hours	
1	STATISTICAL TREATMENT OF ANALYTICAL DATA	01	15	
	& COMPLEXOMETRIC TITRATIONS (15L)			
	1.1 Results of Analysis (4L)			
	1.1.1 Errors in analysis and their types			
	1.1.2 Precision and accuracy in analysis			
	1.1.3 Corrections for determinate errors			
	1.2. Nature of Indeterminate Errors (5L)			
	1.2.1. The true and acceptable value of a result of analysis			
	1.2.2. Measures of central tendency: mean, median, mode,			
	average			
	1.2.3. Measures of dispersion: Absolute deviation, relative			
	deviation, relative average deviation, standard deviation, (s,			
	sigma) variance, coefficient of variation			
	1.3. Complexometric Titrations (6L)			
	1.3.1. Introduction, construction of titration curve			
	1.3.2. Use of EDTA as titrant and its standardization			
	1.3.3. Selectivity of EDTA as a titrant. Factors enhancing			
	selectivity with examples. Advantages and limitations of EDTA			
	as a titrant.			
	1.3.4. Types of EDTA titrations.			
	1.3.5. Metallochromic indicators, theory, examples and applications.			

	Total	02	30
	2.2.2.3. Qualitative and Quantitative Applications of HPLC.		
	Precolumn, Sample injection system, HPLC Columns, Detectors (UV–Visible detector, Refractive index detector)		
	pumps, screw driven- syringe type pumps, pneumatic pumps),		
	Solvent Reservoir, Degassing system, Pumps- (reciprocating		
	2.2.2.2. Instrumentation- components with their significance:		
	2.2.2.1. Introduction and Principle		
	(5L)		
	2.2.2 High Performance Liquid chromatography (HPLC)		
	2.2.1.3. Qualitative, Quantitative analysis and applications		
	TCD, FID, ECD		
	of columns, stationary phases in GSC and GLC, Detectors:		
	2.2.1.2. Instrumentation: Block diagram and components, types		
	2.2.1.1. Introduction, Principle, Theory and terms involved		
	2.2.1. Gas Chromatography (5L)		
	2.2 METHODS OF SEPARATION (10L)		
	2.1.6. Applications, Advantages and Limitations		
	2.1.5. Comparison between FES and AAS		
	curve method.		
	Atomizer). 2.1.4. Quantification method of FES and AAS—Calibration		
	Instrumentation (Source, Chopper, Flame and Electrothermal		
	2.1.3. Atomic Absorption Spectroscopy—Principle,		
	atomizers, types of Burners, Wavelength selectors, Detectors).		
	2.1.2. Flame Photometry– Principle, Instrumentation (Flame		
	Absorption and Emission Spectra		
	2.1.1. Introduction, Energy level diagrams, atomic spectra,		
	(FES) and Atomic Absorption Spectroscopy (AAS) (5L)		
	2.1. Atomic Spectroscopy: Flame Emission spectroscopy		
	OF SEPARATION (15L)		
2	OPTICAL METHODS OF ANALYSIS AND METHODS	01	15

Access to the Course

The course is available for all the students admitted for Third Year Bachelor of Science.

Methods of Assessment

The assessment pattern would be 40:60, 60% for Semester End Examination (SEE) and 40% for Continuous Internal Assessment (CIA). The structure of the SEE and CIA would be as recommended by the Board of Studies and approved by the Board of Examination and the Academic Council of the college.

References:

- 1. D. Harvey, Modern Analytical Chemistry, The McGraw-Hill Pub. 1st Edition (2000).
- 2. H.S. Ray, R Sridhar and K.P. Abraham, Extraction of Nonferrous Metals, Affiliated East-West Press Pvt. Ltd. New Delhi (1985) reprint 2007.
- 3. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denney, Vogel's Textbook of Quantitative Chemical Analysis, Fifth edition, ELBS Publication (1996).
- 4. D.A. Skoog D.M. West and F.J. Holler, Fundamentals of Analytical Chemistry, 7th Edition (printed in India in 2001) ISBN Publication.
- 5. Analytical Chemistry, J.G. Dick,1973 Tata McGraw Hill Publishing Co. Ltd. New Delhi.
- 6. Quantitative analysis, Dey& Underwood, Prentice Hall of India, Pvt. Ltd. New Delhi.
- 7. Fundamentals of Analytical Chemistry, Skoog 8th edition, Saunders college publishing.

• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •						